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Figure 1: The process of forming capability-aware shared mental model for task assignment of human-AI cooperation. 

ABSTRACT 
The existing work on task assignment of human-AI cooperation 
did not consider the diferences between individual team members 
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regarding their capabilities, leading to sub-optimal task completion 
results. In this work, we propose a capability-aware shared men-
tal model (CASMM) with the components of task grouping and 
negotiation, which utilize tuples to break down tasks into sets of 
scenarios relating to difculties and then dynamically merge the 
task grouping ideas raised by human and AI through negotiation. 
We implement a prototype system and a 3-phase user study for 
the proof of concept via an image labeling task. The result shows 
building CASMM boosts the accuracy and time efciency signif-
cantly through forming the task assignment close to real capabilities 
within few iterations. It helps users better understand the capability 
of AI and themselves. Our method has the potential to generalize 
to other scenarios such as medical diagnoses and automatic driving 
in facilitating better human-AI cooperation. 
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1 INTRODUCTION 
Artifcial intelligence (AI) technology is permeating all sectors of 
society, and AI has evolved into an intelligent supporter capable 
of performing various tasks. However, for real-world tasks, high 
accuracy with low fault tolerance is required. Since AI cannot guar-
antee 100% accuracy, a more practical and feasible way to use the 
power of AI for increasing efciency and reducing human labor 
is to pair humans and AI together to complete these tasks. In fact, 
some interesting pioneering works have been carried out in this 
direction, such as automated driving [62], medical diagnosis [4], 
loan approval [60], employee recruitment [42], and pair program-
ming [64]. In various forms of human-AI pairing, a basic form of 
cooperation is to send tasks to AI or human depending on the AI and 
human capabilities, so as to optimize certain performance measures 
of the human-AI team, such as the accuracy of task completion and 
efciency. In this way, it is rational to make AI only work on cases 
in which it is good at, while asking human to deal with those com-
plex and unexpected cases that require fexibility or out-of-domain 
knowledge. We term this form of AI-human pairing or teaming as 
Task Assignment based Human-AI cooperation (TAHAC). 

Many tasks in human-AI cooperation can be directly modelled 
as TAHAC such as autonomous driving with human supervisory 
or collaborative disease diagnosis on medical images. The key chal-
lenge is to determine which task should be assigned to which team 
member, i.e., to human or to AI, so that humans and AI could col-
laboratively achieve high accuracy as well as decent time efciency 
in completing a series of real-world tasks. For example, in a sce-
nario where human doctors team up with AI assistants to diagnose 
diseases such as detecting breast cancer metastases in images of 
lymph node tissue sections [45], human-AI teams need to decide 
which cases need to be consulted with human doctors, and which 
could be completed by an AI assistant with high confdence. False 
diagnosis can delay patient treatment, while manual diagnosis is 
often time-consuming. Letting AI handle tasks where a confrmed 
correct diagnosis can be obtained quickly by the AI, and reassigning 
the rest to human doctors will increase the time efciency of the 
human-AI team while ensuring a higher accuracy rate. 

In real-world scenarios, it is difcult to achieve efective task 
assignments since it has to overcome several challenges. Firstly, the 
assignment of tasks should be based on the capabilities of each team 
member. However, the lack of understanding of mutual capabilities 
between humans and AI may further lead to mutual distrust or 

over trust, leading to failed cooperation. This is often due to the 
fact that human collaborators have unrealistic expectations of AI, 
i.e, human’s estimations of AI’s capabilities are not calibrated to 
what AI’s actual capabilities are in a timely manner [7]. For exam-
ple, a driver completely ignored manual supervision while driving 
in bright light, leading to a fatal crash that cost his life [61]. And 
research has shown that it is because the driver did not realize the 
inability of the automated driving algorithm to distinguish between 
a white sky and the roof of a speeding white truck in a bright light 
scenario [59]. Secondly, task allocation should take into account 
not only the diferences in capabilities between humans and AI, but 
also the diferences between various human individuals. The dif-
ferences in human capabilities largely afect their behaviors when 
they cooperate with AI. For example, Glick et al. [24]’s research 
showed that novice clinicians tend to rely on automated diagnostic 
algorithms, while experts are prone to perform manual diagnoses. 
Hence, it may be appropriate to assign human a difcult task when 
AI and human experts cooperate. But when the human counterpart 
changes to become a novice, asking the AI to complete the task 
can become a better choice. In such scenarios, methods as Wilder 
et al. [83] proposed, which utilize the average performance distri-
bution of the human to train a unifed task assignment algorithm 
for diferent humans may not be the best practice. Consequently, 
to solve these challenges, the assignment of tasks for human-AI 
cooperation should not only be based on the mutual understanding 
of human and AI’s capabilities to avoid distrust or over trust, but 
also need to consider the diferent capabilities of diferent members 
to dynamically produce the assignment plan for diferent human-AI 
teams. 

To this end, we propose to form a capability-aware shared 
mental model (CASMM) that takes into account capabilities be-
tween humans and AI, which is able to represent human and AI’s 
capabilities and dynamically mediate their work assignments dur-
ing the cooperation process. The shared mental model is a notion 
that was frst studied in human-human cooperation [29, 37]. It en-
sures that every team member gets hold of each other’s mental 
model, thus reaching an agreement on the team’s behavior. Here, 
inspired by works in systematic engineering [29] and human-robot 
cooperation [34, 53], a mental model could be defned as a mental 
representation or explanation that an agent (human or AI) uses to 
interact, describe, and predict the behavior of a particular substance 
or system [78]. Additionally, during the procedure of forming the 
CASMM, the two parties share not only their completion results 
but also the reliability evaluations for each other (such as accu-
racy or confdence) of completing cooperational tasks, which is 
shown to be efective in cognitive science for cooperation between 
humans [2]. 

To formally represent the team members’ capabilities of con-
ducting certain tasks, we utilize a tuple (�� , �� , �� ), in which �� 
denotes the team member (human or AI), �� denotes the type of task 
in a specifc scenario (e.g., driving in fog, in bright sunlight, or at 
rainy night), and �� represents the performance of the team mem-
ber handling such tasks. The tuple distinguishes the same task in 
diferent scenarios (task grouping), serves as the basis for building a 
shared mental model, and clearly shows the mapping between spe-
cifc tasks and the capability of each team member to perform the 
task. Additionally, the process of building a shared mental model 
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often needs multiple rounds of interaction to help humans and AI 
to better understand each other’s capabilities in order to make a 
better decision on the task assignment. Specifcally, we designed 
negotiation methods to dynamically merge the task grouping ideas 
raised by human and AI. Such negotiations are multiple-round, in 
order to catch up with the latest grouping as the members gain a 
deeper understanding of each other. As cooperation progresses, if 
either team member believes the task assignment does not refect 
their real capabilities, our method will update the value of corre-
sponding tuples, thus the shared mental model will be revised as 
well to better represent each team member’s capability. As a result, 
for task assignment between human-AI teams, our shared mental 
model is modifed as a collaboratively negotiated and dynam-
ically constructed model for grouping tasks based on each 
team member’s capability that could be further mapped into 
task assignment. With the support of CASMM, for real-world 
cases such as medical diagnosing, the physician and the medical 
imaging AI could come up with capability-aware task assignments 
so that each member diagnoses the images it is better at. As mutual 
understanding gradually improves during cooperation, the shared 
mental model is continuously updated, leading towards better task 
assignments and more efective cooperation. 

To evaluate the efectiveness and usefulness of the proposed 
CASMM, we implement a prototype system focused on the task of 
collaborative image labelling. Specifcally, we designed a 3-phase 
user study, where human and AI cooperate on the tasks through a 
user interface. From the experiment, we observe that assigning tasks 
based on a shared mental model boosts the accuracy and efciency 
of the human-AI team performance signifcantly. The results also 
show that building the shared mental model for human-AI task 
assignment is able to form a simple, intuitive task assignment plan 
capable of mediating complementary human-AI cooperation with 
relatively few iterations. The human participants also are more 
aware of AI’s capabilities. The shared mental model is not task-
specifc and can be extended to more general scenarios such as loan 
approval, medical diagnoses, and automatic driving in facilitating 
better human-AI cooperation. 

Our contributions of this work are summarized as follows: 

1 We propose to utilize the notion of the shared mental model 
(SMM) to facilitate task assignment based human-AI cooper-
ation (TAHAC), which is a collaboratively constructed model 
for grouping tasks based on human and AI’s capabilities and 
dynamically mediating their work assignment during the 
cooperation process. 

2 We propose a unifed form of tuples (�� , �� , �� ) to represent 
the task-specifc capability of human and AI, which is under-
standable for both human and AI as well as feasible for being 
computed, stored, negotiated, revised, and further used for 
assigning tasks. Utilizing the forms of tuples as the basis, we 
designed a mechanism to build capability-aware shared men-
tal model (CASMM) via iterative multi-round task grouping 
and task assignment negotiation. 

3 We implement a prototype system, conduct a 3-stage user 
study to evaluate the efectiveness of the proposed CASMM 
and explore the dynamics of human-AI cooperation. The 
results illustrate that the CASMM can improve the accuracy 

and time efciency for task assignment based human-AI co-
operation (TAHAC). Moreover, the CASMM can help human-
AI teams better understand each member’s capability and 
then come up with a task assignment plan to better ft their 
real capabilities. 

2 RELATED WORK 

2.1 Human-Robot Cooperation and Human-AI 
Cooperation 

2.1.1 Human-robot cooperation 
Nowadays, a signifcant portion of robots includes AI algorithms 

to accomplish tasks more autonomously and intelligently. As El Za-
atari et al. [17] described, human–robot cooperation can be cate-
gorized into 4 kinds: independent, simultaneous, sequential, and 
supportive, according to the various degrees of interaction. As such 
categorizing suggests, the robots for human-robot cooperation tasks 
are often designed to accomplish tasks that are physically difcult 
or impossible for humans to accomplish, and lots of works usually 
default a commander-follower relationship between human and 
robot [34]. Hence, unlike the TAHAC we discussed, human-robot 
cooperation less often involves the issues we have mentioned about 
whether the current task should be assigned to humans or robots. 
However, a series of works done to mediate task assignments in 
human-robot cooperation are still enlightening for us. A series of 
works focus on sharing robots’ explanations of their behavior with 
human [7, 85] or other robots [23], thus assisting human opera-
tors to come up with assignments more accord with the robots’ 
capability. For example, Chakraborti et al. [7] evaluated various ex-
planation generation algorithms under rescue scenarios that come 
up with explanations best ftting human expectations in order to 
make human better understand and operate the robots. Another 
research direction is trying to make robots mimic human experts’ 
actions, thus making human forms natural assignments as cooper-
ating with fellow human workers. Dehkordi et al. [14] leveraged 
human experts’ series of actions or logic of cooperating for train-
ing, so robots are able to predict what might need to be done for 
human based on training. Although these researches partly rely on 
several robotic concepts or characteristics such as environmental 
awareness (or situational awareness) and the robots’ capability of 
switching macro motion state, the way of mimicking human or 
sharing explanations of behaviors share similar motivation for us 
to build capability-aware shared mental models. 

2.1.2 Human-AI cooperation 
Nowadays most of the engineering tasks between human and AI 

adopt the method of human-AI cooperation, which includes com-
plete and incomplete task assignments [43]. The former is similar to 
human-robot cooperation, human and AI complete diferent types 
of jobs. The later human works on the basis of AI’s pre-work to 
improve the subsequent work or, as what we defned, the task as-
signment based human-AI cooperation (HATAC forms). In practice, 
HATAC forms exist in many felds, such as automated driving [62], 
medic diagnosis [4], loan approval [60], human recruiting [42] and 
pair programming [64]. For example, in the employee recruitment 
process, human recruitment managers would screen some of the 
pre-screened candidates by AI to efciently process candidate data 
from a broader and more diverse talent pool [42]. 
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Several methods are adopted to further boost HATAC tasks in an 
efective way. First of all, some works paid attention to designing 
information-delivering methods for human during the scenarios 
when AI agents fail or fnish the task with low confdence [30]. For 
instance, Matthew Kay et al. studied visualization to help people 
better perceive the uncertainty of the output given by mobile pre-
dictive system [33]. Secondly, further, several studies are devoted 
to explaining AI for human-AI cooperation, thus making human 
capable of getting the various information of the AI they are co-
operating with. These explanations cover perspectives from AI 
capability assessment [25, 50], intermediate output [25, 27], attri-
bution analysis of reasoning process [1, 50, 71, 84] and algorithmic 
output [63, 82] etc. Among these, what motivates our designing of 
the shared mental model is that works like [66, 67] utilized textual 
knowledge and feature expressions to make AIs more causable for 
these explanations. For example, Schaekermann et al. [66] select 
knowledge from medical guides such as rules to classify segments 
of a polysomnogram to one of fve sleep stages to explain the accor-
dance of AI’s judgment of the patient’s sleep phase. Jean Y. Song 
et al. replaced the numerical amount of 3D training data with re-
sponses aggregated from human worker annotations while viewing 
diferent video frames of the same 3D object [77]. These works 
described above inspired us to design our shared mental model by 
explaining to humans in a unifed form the cases in which AI is 
prone to failures that can allow humans to better understand the 
capabilities of AI. 

Several works take another route of elaborating human factors 
(such as history logs and training data from humans) into calibrat-
ing machine learning algorithms [36] for completing human-AI 
cooperation tasks. Chancellor et al. [8] utilized the users’ tags of 
photos on Instagram together with clinician annotations to predict 
varied mental illness severity online. Works done in crowd-sourcing 
incorporate and aggregate multiple human worker’s outputs and 
corresponding history tracking, then try to decide whether the 
collection of human samples is enough to infer the correct an-
swer with acceptable confdence, thus stop consulting human work-
ers [26, 31, 38, 46, 54, 76, 83]. Wilder et al. [83] introduced human 
factors by designing cost and utility based on the average human-
capability distribution for algorithms deciding when to query hu-
man workers in experiments. For such work, collecting enough 
human work data to form an average or distributed representation 
of capabilities is an important part of reaching its algorithmic goals. 
However, the same well-trained algorithm is not fully compatible 
with human collaborators with diferent capabilities. For example, 
there is a large diference between the trusting behavior of novice 
and expert physicians during their cooperation with diagnostic 
AI [24]. Moreover, the designing of such query algorithm requires 
parameters from the AI that participates in the cooperation tasks, 
which usually are inaccessible since many commercialized AI mod-
els are not open-source. Also, in this way, algorithms still remain 
opaque for human users, which also might undermine human’s 
trust in AI. These works inspired us to incorporate diferent individ-
uals’ capabilities as factors into the task assignment process, thus 
leading to the idea of building a shared mental model. 

2.2 Mental Models in Teams 
As we described, to form proper work assignment of human-AI 
hybrid intelligent teams, both human and AI agents need to form a 
decent mental model of each other [40] and themselves [15, 49]. 

Mental models and shared mental models for human 
teams: mental model was originally conceptualized by Craik (1943), 
as a model of thinking that parallels reality [12]. This notion was 
further developed and re-clarifed in various domains for efective 
utilization [57]. The mental model shared in teams contains how 
team members predict what the others are going to do, hence it 
facilitates coordinating actions between teammates [11, 29]. For 
human-human teams, usually, team members with similar men-
tal models perform better than those with more accurate but less 
similar mental models [48]. Therefore, the main purpose of form-
ing a shared mental model in human cooperation teams, such as 
sports teams, is to reach a shared knowledge state, in which the 
knowledge held by each member about the upcoming actions of the 
team is at least similar to other team members’ knowledge of these 
actions [13, 16, 79]. Work as [51] described that a common shared 
mental model between humans should involve mutual behaviors 
like information sharing, group learning, and cognitive consensus 
among team members [51]. 

Mental models of human in human-AI cooperation: the 
mental model of human-workers signifcantly infuences the ef-
fciency of human-AI cooperation. Therefore, several works con-
sidered human mental models in evaluating human-AI coopera-
tion [10, 41, 81]. They focus on decoding human perception or 
expectation of robots or AI into AI during the cooperation pro-
cess [7, 14, 23]. Zhang et al. [88] composed a case study illustrating 
various factors infuencing how human workers accept AI assis-
tants and expect their performances, which include pre-existing 
attitudes and past experiences. Several systems involving human-AI 
cooperation incorporate the notion of humans’ mental models of 
AI assistants. For example, Bansal et al. [4] mentioned the notion of 
error boundary of AI agents perceived by human and discussed how 
properties of error boundaries afect the mental model of human 
workers and team efciency. Gero et al. [22] apply the think-aloud 
method to study people’s mental models of AI in a cooperative 
word guessing game and evaluate under which case people could 
get a better estimation of AI assistants in games. Nguyen et al. [52] 
designed interfaces to help humans build a more accurate mental 
model of AI by presenting information such as dynamic relations 
between AI’s predicted correctness and sources for judgment in a 
fast-checking task. These designs try to help human in building 
a unidirectional mental model of AI while familiarizing with an 
AI system’s algorithms. However, building only one-side mental 
model is insufcient, as Harmanpreet Kaur stated, a shared mental 
model needed to be formed among team members [32]. 

Shared mental models in human-AI cooperation: upon the 
purposes of bridging human’s teaming up with AI, lots of works 
choose to explore whether and how the shared mental model would 
boost human-robot cooperation [14, 47, 53, 56–58, 68]. It is prob-
ably due to the fact that robots have more bionic properties and 
physical characteristics that human workers are able to easily an-
thropomorphize, rationalize, relate and compare. Several works 
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Figure 2: The iterative process of building capability-aware shared mental model between human and AI. 

tried to identify and embed the shared mental model into the co-
operation process. Such as Nikolaidis and Shah [53] proposed to 
utilize shared mental model as an infuential factor of the Partially 
Observable Markov Decision Process (POMDP), Scheutz [68] broke 
down shared mental models into facts and beliefs, and then de-
fned processes of updating tokens to iteratively update belief and 
propositions within the team. 

Although several works have noticed the importance of incor-
porating shared mental models into more generalized human-AI 
teams, the explorations remain in treating mental models as an 
infecting factor, or researching whether the existence of such no-
tion would boost teamwork under specifc tasks [86]. For example, 
Razin et al. [62] evaluated Banks et al. [3]’s Human-AI shared men-
tal model theory by examining how a self-driving vehicle’s hazard 
assessment facilitates shared mental models. Claire et al. used the 
decision tree to simulate teammate’s mental models and make sense 
of the hints in card games [44]. As in [32], currently, the bottleneck 
in human-AI cooperation is the socio-technical gap between the 
fuid intents and interactions of humans and the discrete and brittle 
features of AI agents, which will persist until both humans and AI 
can better understand each other’s capabilities. However, as best as 
we could learn, no work has been done in generalized human-AI 
cooperation scenarios that highlight or incorporate a shared mental 
model for task assignment within the systems. Additionally, as we 
described in section 2.1.2, the current work did not take the capa-
bility diference between individuals into consideration. Therefore, 
in this study, we propose a method to derive a capability-aware 
shared mental model for task assignment in order to facilitate better 
cooperation between human and AI. 

3 CAPABILITY-AWARE SHARED MENTAL 
MODEL IN TASK ASSIGNMENT BASED 
HUMAN AND AI COOPERATION 
(CASMM-TAHAC) 

In this paper, we focus on mediating tasks where human and AI 
cooperate together to complete the same tasks and need to decide 
which portion of the tasks should be assigned to which member. A 
large portion of the conficts in such task assignments for human-AI 
cooperation tasks is due to the team workers’ inadequate under-
standing of each other’s capability which leads to inappropriate 

assignment distribution. In fact, human has diverse capabilities 
and their understanding of AI’s capability is gradually developing 
along the cooperation, which should be taken into consideration to 
infuence the task assignment as well. To this end, we utilize the no-
tion of the mental model and further develop the capability-aware 
shared mental model for task assignment in human-AI cooperation. 

3.1 Designing the Shared Mental Model 
As ideas raised in systematic engineering [29] and human-robot 
cooperation [34, 53], a mental model is usually the mental represen-
tation or explanation that an agent (human or AI) uses to interact 
with, describe, and predict the behavior of a certain matter or sys-
tem. For TAHAC tasks, we defne mental models as the mental 
representation formed by each side of the group (human and AI) 
consisting of the capability evaluations of each member and as-
signment strategies conditioned on the evaluations. This notion of 
“mental model” may seem diferent from the “standard” defnition in 
cognitive science. However, it does refect the ideas of how human 
or AI perceive the counterpart’s capability and predict each other’s 
behaviors in task assignment, which is in consistence with the 
mental model derived in the area of human-AI cooperation [34, 53]. 
Since the human part and AI part may form divergent mental mod-
els, we also further develop the shared mental model for TAHAC. 
Specifcally, a shared mental model is referred to as the consistent 
mental model shared among the team members after reaching a 
consensus. Such consensus should base on a unifed representation 
for both sides to align the capabilities, and rounds of negotiations 
to collaboratively eliminate the divergence and dynamically catch 
up with the updates of the mental models. It does not necessarily 
imply that team members share identical mental models, but hold 
compatible mental models that lead to common expectations for 
the task and team [74]. 

Given the above considerations, there exist several issues in front 
of building a shared mental model between human and AI for task 
assignment. First of all, diferent from the communication between 
humans, human and AI is not able to understand each other easily 
through a few conversations. Building a communication bridge 
between human and AI so that they can understand each other’s 
capabilities is a difcult but essential problem. Secondly, once the 
human-AI team recognizes each other’s capability, a clear and rea-
sonable task division strategy should be reached between human 
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Figure 3: An example of the process of building the capability-aware shared mental model between human and AI. � represents 
the list of tuples from human’s perspective (human mental model), and � represents the list of tuples from AI’s perspective (AI 
Mental Model). � and � are simplifed into 2 lists of �� and �� as human-centric representations, which denotes the scenarios to 

� � 
assign tasks to human from human or AI’s perspective. ��� represents the shared mental model, which is computed by merging 
�� and �� into the list of �� (T as for human-AI Team) through negotiation methods and then mapped into capability-aware 
� � � 
task assignment. 

and AI based on the individual capability to obtain the optimal 
reconciliation [18]. Moreover, efective evaluation methods and 
standards should be introduced to precisely guide the updates of 
the shared mental model in the cooperation procedure. To address 
the above issues, we propose to design a capability-aware shared 
mental model in task assignment based human-AI cooperation with 
the following components, i.e., task grouping and negotiation. The 
task grouping describes how well a certain member deals with the 
specifc task scenario. The negotiation eliminates the divergences 
and reaches a consensus between the human-AI team regarding dis-
tributing the task scenarios according to each member’s strengths 
and weaknesses. Hence, the process of building such shared mental 
model is illustrated as in Fig.2. In task grouping, based on the eval-
uation of each other’s performance of a certain amount of tasks 
with ground truth, human and AI are frst guided by the system 
to form each other’s mental model (� (0), �(0)) in the form of tu-
ples. Then, the negotiation process (negotiation (0)) merges the 
mental models of both parties to form an initialized shared mental 
model (��� (0)) for the system to assign the upcoming coopera-
tional tasks without ground truth. When human and AI cooperate 
to complete the assigned tasks (task completion (�)), they can en-
ter negotiation sessions (negotiation (�)) several times to further 
update and revise their mental model (� (�), �(�)) based on the com-
parison of task assignment and their capability assessment, and 
then form the dynamically updated ��� (�). After the completion 
of the TAHAC tasks, designed evaluation metrics can be utilized to 
assess the efectiveness of human-AI cooperation based on SMM, 
thus evaluating the efectiveness of our CASMM for TAHAC tasks. 

3.2 Task Grouping 
In a TAHAC situation, in order to assign members with the most 
suitable tasks according to their capabilities, we design the frst 
step of building the shared mental model as task grouping, which 
groups the tasks into varied scenarios that human and AI exhibit 

signifcant diferences in capabilities of completing tasks, and then 
builds the mapping between each member’s capability and these 
scenarios utilizing a unifed form of tuples (�� , �� , �� ). 

Defning scenarios. Scenarios are the task groups that human 
and AI exhibit signifcant diferences in capabilities of completing 
tasks. The intuition of grouping tasks into scenarios is based on 
two aspects. Firstly, humans are observed to tend to develop sim-
ple cases to understand the performance of complex systems [55]. 
Secondly, many existing studies have demonstrated that machine 
learning algorithms have been observed to have “biases” for some 
scenarios [19, 83] which are observable for human, despite the fact 
that AI and humans make judgments based on diferent criteria 
when completing tasks. Hence, such scenarios, in other words, 
are observable “features” (or attributes) that have impacts on the 
performances of machine learning algorithms from a certain aspect, 
as many of these scenarios are macro-observable and understand-
able for humans. For example, many image recognition algorithms 
are not good at recognizing blurred images, or when images’ color 
and grayscale information is erased (with only edge or silhouette 
information present) [20]. For an autonomous driving vehicle based 
on machine learning image recognition algorithms, driving scenar-
ios that produce blurred visuals (such as foggy or rainy days) or 
silhouette-only observations (night driving with low-light) may sig-
nifcantly afect the accuracy and efciency of autonomous driving 
algorithms. Such observations, even without insights of machine 
learning algorithms, can still be observed and summarized by hu-
man drivers and utilized to evaluate the AI’s capabilities under 
these scenarios. 

Mapping Capabilities. We use a list of tuples (�� , �� , �� ) to 
represent the capability regarding task scenarios, which is both 
explainable for human and readable for AI. For each tuple, �� rep-
resents the team member (human or AI), �� denotes the type of task 
in a specifc scenario, and �� denotes the corresponding accuracy 
of completing the task in the scenario �� for �� . The scenario �� is 
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represented by a set of task-related conditions �� summarized by 
human or AI that greatly afect the accuracy and exhibit signifcant 
diferences in capabilities of completing tasks. Specifcally, �� could 
be binary vectors, i.e., �� = [�1, �2, ..., �� ], where �1, �2, ..., �� is 0 or 
1 to denote whether current condition exists in scenario �� . And the 
� varies for diferent human-AI cooperation tasks, depending on 
the possible number of conditions that human and AI could sum-
marize that afect task accuracy. Here, it is notable that the notion 
of condition also shares the similar connotation of “features” in 
feature visualization or feature importance of explainable machine 
learning algorithms [28, 87] as we mentioned above, which, from 
AI’s perspective, could be treated as AI’s summary of conditions 
that could make sense to human observers. For example, in driving 
tasks, assume there are three conditions summarized by human 
and AI in total: “dark-night vision”, “vision is partially obscured by 
large obstacles” and “vision is blurred”. And, a dark-night vision 
blurred by rain may make it much harder for AI to accurately rec-
ognize the surroundings and thus decreases the accuracy of making 
correct actions. Hence, the scenario here is “dark-night vision” and 
“vision is blurred”, which could be represented as �1 = [1, 0, 1], and 
the tuples corresponding to the scenario are (AI, [1,0,1], low) and 
(human, [1,0,1], high). As shown in Fig.3, these tuples are collected 
from both the human side to form � (human mental model) and 
the AI side to form � (AI mental model). Human can leverage their 
expert knowledge to summarize the scenarios in which their pre-
diction is infuenced while AI can utilize the accuracy statistics of 
previous tasks to break down the cases by exploring the combi-
nation of a set of conditions. These representations are gradually 
updated and revised along with the cooperation to keep a more 
accurate mapping between members’ capability and corresponding 
task scenarios as the mutual understanding goes deeper [83]. Based 
on these representations, the original tasks can be further grouped 
into fne-grained task scenarios for assignment. 

Human-centric capability representation. For most human-
AI cooperation, more attention should be paid when AI tends to 
fail and then hands over to the human. Hence, we focus on tuples 
that highlight scenarios where human has higher accuracy than 
AI, i.e., tuples where �� is human, �� is relatively higher than AI. 
Therefore, we could utilize the scenarios �� of these tuples to form 
a human-centric capability representation, denoting task groups 
suitable for handing over to the human. In this way, the � and � 
could be simplifed as list of �� and �� . Each list includes selected 

� � 
scenarios from AI or human where AI performs worse and requires 
handing over to human. Such as in Fig.3, the evaluation from human 
as (Human, [1,0,1,0], High) is recorded and simplifed as [1,0,1,0] in 
�� . The advantage of doing this lies in two folds: it simplifes the 
� 
redundant representations of the mental models, as well as relieves 
human’s cognitive workload in cooperation. 

As illustrated in Fig.3, the lists of tuples (or binary vectors of 
scenarios) output by human and AI after task grouping can be 
regarded as their initial and individual mental models for TAHAC. 
And negotiations will be placed to achieve a consensus about the 
shared grouping between both sides and assign the task considering 
each member’s strengths and weaknesses according to various task 
scenarios. 

3.3 Negotiation 
Negotiation is the process to resolve the diferences between � 
and � by merging them through negotiation methods � and reach 
a shared mental model ��� , i.e, ��� = �(�, �), that enables 
further task assignment. Usually, negotiations are required to catch 
up with the latest mental models as the members gain a deeper 
understanding of each other. To merge human mental model � 
and AI mental model � in forms of tuples (�� , �� , �� ), the consid-
erations should include aligning each �� , �� , and �� in � and � to 
form agreed tuples to be mapped into task assignment. However, 
for TAHAC, as discussed in task grouping, we focus on scenarios 
which should be handed over to human and utilized human-centric 
capability representation to highlight these scenarios. Hence, ne-
gotiation could further be simplifed to only align scenarios where 
human or AI believe human’s capability is superior to AI. That is, 
the negotiation methods � should realize �� = �(�� , ��), as shown 

� � �
in Fig.3. Since the scenarios are actually binary vectors which rep-
resent the presence or not of certain conditions, we designed to 
utilize the bitwise operations as feasible negotiation methods. More 
specifcally, we propose to utilize two basic strategies, i.e., bitwise 
AND (&) and bitwise OR ( | ) to merge two diferent scenarios into 
a shared one. Noting that usually the human side should be the 
actual controller of the whole system and their grouping results 
have higher priority [72], the proposed merging strategies during 
the negotiation are further designed to lean towards human. 

Human-biased Bitwise AND. Bitwise AND is the logical opera-
tion of computing AND for each bit of the binary vector �� proposed 
by the human and AI. In detail, for �� (e.g., [1, 1, 0]) from human 

� 
side and �� (e.g., [1, 0, 1]) from AI side, the shared scenario is com-

� 
= �� & �� puted as �� ([1, 0, 0] = [1, 1, 0] & [1, 0, 1]). If after bitwise 

� � � 
AND operation, �� is a null vector in which all the elements are zero, 

� 
we will let �� = �� instead, based on the assumption that human’s 

� �
assessment is more privileged. This method is called human-biased 
bitwise AND during evaluation. Since in this way, fewer conditions 
are included in one scenario after negotiation (e.g., [1, 0, 1] speci-
fes tasks satisfying two conditions, while [1, 0, 0] specifes tasks 
satisfying one condition), it makes a mild strategy that generates a 
more relaxed scenario covering a broader range. More cases will 
hit the scenarios and be assigned to human according to the shared 
mental model. 

Human-biased Bitwise OR. Bitwise OR is the logical operation 
of computing OR for each bit of the binary vector �� proposed by the 
human and AI. It is computed as �� = �� | �� ([1, 1, 1] = [1, 1, 0] | 

� � � 
[1, 0, 1]). Similarly, if �� equals to neither �� nor �� , �� will be 

� � � � 
replaced with �� to lean toward human’s assessment. This method 

�
is called human-biased bitwise OR during evaluation. In this way, 
more conditions are included in one scenario after negotiation, it 
forms a strict strategy that generates a more rigorous scenario and 
drives the system to be careful and safe, i.e., fewer cases would 
satisfy the scenarios the shared mental model suggested but each 
of them is paid more attention to. 

After the negotiation processes, the merged representation ��� 
can then be utilized for subsequent task assignment. Based on our 
human-centric representations, subsequent tasks that satisfy the 
scenarios in ��

� are more suitable to be handed over to human for 
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scrutiny and completion. If human or AI fnds the current ���-
based task assignment inappropriate during cooperation, such ne-
gotiation processes can be carried out iteratively to continuously 
update ��� based on the updated � and � of the human and AI, 
thus forming the revised task assignment strategies. 

3.4 Evaluation Metrics 
To assess the efectiveness of human-AI cooperation and explore 
the cooperation dynamics with the introduction of CASMM, we 
introduced the Cooperation Score and Assignment Strategy 
Accuracy as additional evaluation metrics aside from accuracy and 
time efciency. 

Cooperation Score: We design the cooperation score to mea-
sure how well the shared mental model mechanism facilitates the 
task assignment in human-AI cooperation. The metric is computed 
in the task loop to serve as an indicator for fxing the potential is-
sues in the cooperation. Diferent from an ordinary task completed 
by a single human or AI, in the cooperation scenario, accuracy is 
not sufcient to evaluate the quality of the shared mental model. 
Consider two extreme cases: in the frst case, the human member is 
sophisticated and does not care about the suggested assignment at 
all. Therefore, the human completes all the tasks alone with high 
accuracy regardless of the task assignment. In the second case, the 
human member obeys the task assignment, but unfortunately, the 
assignment strategy given by the shared mental model is terrible 
and the human is always given tasks she is not good at. Both cases 
are bad cooperation scenarios since they waste the resources of the 
member’s strength. Therefore, to evaluate how well the shared men-
tal model mechanism performs, three key factors should be taken 
into account, i.e., assignment acceptance, assignment strategy, and 
the accuracy of the task. 

For an ideal cooperation practice, the human should be assigned 
with tasks that she is good at completing (correct assignment strat-
egy), and she should agree with the assignment and be willing to 
complete her share given by the shared mental model (high assign-
ment acceptance). Finally, the task should be correctly completed 
(high accuracy). Any factor missing leads to a decrease in coopera-
tion quality, while the correctness of completing the tasks weighs 
more. Hence, the cooperation score is computed as follows: 

����������� ����� = � × 0.5 + � × 0.5 + � (1) 

where, for each cooperation task, � denotes the correctness of the 
current assignment (+1 for correct; -1 for incorrect); � is the assign-
ment acceptance of the current task (+1 for accepted; -1 for not 
accepted); � represents the correctness of the result (+1 for task be-
ing completed correctly; -1 for incorrectly). The correctness of the 
current assignment could be computed as: if the assigned member 
fnishes the task correctly, the assignment is correct. Otherwise, it 
is incorrect. The score ranges from -2 to 2, where a higher score in-
dicates more successful cooperation. An ideal cooperation process 
earns 2 points when the task is correctly assigned, the assignment 
is accepted, and the result is correct. If the result and assignment 
are correct, but the human rejects the assignment, only 1 point is 
obtained to punish the waste of team resources. If both the cooper-
ation acceptance and the strategy are incorrect, the team’s score is 
at most 0 since the cooperation fails in this case. The cooperation 

score is computed for each task and the averaged cooperation score 
can empirically refect the quality of the shared mental model. 

Assignment Strategy Accuracy: We also introduce the assign-
ment strategy accuracy to theoretically measure the accuracy of the 
task assignment by computing its similarity with an ideal assign-
ment strategy. The ideal assignment can be obtained by exploring 
the performance statistics with ground truth and summarizing sce-
narios that are worse for AI to handle than the human user it’s 
teaming up with. Given the scenarios being presented using binary 
vectors, we can utilize the Jaccard similarity (which is widely uti-
lized to compare the similarity of binary arrays) to compute the 
similarity between the current assignment strategy and the ideal 
strategy as assignment strategy accuracy. An accuracy closer to 
1 means a higher similarity to the ideal one and makes a better 
assignment. 

4 CASMM: A PROOF-OF-CONCEPT 
APPLICATION 

4.1 Research Questions 
To evaluate the feasibility of the proposed capability-aware shared 
mental model, the current research conducted a study that examined 
the following research questions: 

RQ1: How would capability-aware shared mental model for task 
assignment afect the efciency of Human-AI cooperation compared 
with no task assignment or human-generated task assignment? 

We conduct an experiment of 3 phases(exp 1-3), comparing task 
assignment based on the capability-aware shared mental model, 
no task assignment, and human-generated task assignment. To 
quantify cooperation efciency, we measure the success rate and 
task completion time for each experiment group. 

RQ2: How would the task assignment plan generated from exp 
1-3 be diferent from the optimal task assignment plan? 

We recorded the capability of each team member for each exper-
iment and calculate the optimal task assignment plan according to 
their actual corresponding accuracy for all possible classifcation of 
tasks as ground truth and then compare it with other exp 1-3 task 
assignment plans. We hypothesize that the CASMM is closer to the 
ground truth. 

RQ3: How would the negotiation methods infuence the shared 
mental model come up by human-AI teams? 

We compare the 2 types of negotiation methods (human-biased 
bitwise AND (&) and bitwise OR ( | )) regarding the process of 
building CASMM and deriving Task assignment plans compared to 
the ground truth. 

RQ4: How would building the capability-aware shared mental 
model help humans understand AI’s actual capability for a specifc 
task and then become more confdent about the task assignment 
plan? 

For the experiment sessions, we also asked the participants to 
fnish a post-experiment survey to collect their feedback specifc on 
their perception of the CASMM based task assignment plan, their 
experiences with human-AI cooperation, etc. 

4.2 Task Design 
First, we conducted a lab study task for our user test that focused 
on problems of task assignment for human-AI cooperation. We 



Interaction of Thoughts: Towards Mediating Task Assignment in Human-AI Cooperation with a CASMM CHI ’23, April 23–28, 2023, Hamburg, Germany 

Figure 4: (a) Example pictures from automated driving and medical diagnosis tasks. They are the original picture to perform 
the post-processes we chose during the experiment. The post-processed pictures with our chosen techniques to simulate 
real-world scenarios. (b) Silhouette. (c) Lowpass. (d) Edge. (e) Noise. (f) Texture. (g) Rotate. (h) Crop. (i) Texture + Noise + Rotate 
(a multi-condition example). 

designed an image labelling mission as the task for building a 
capability-aware shared mental model during human-AI cooper-
ation. This mission takes on a similar form to lots of human-AI 
cooperation tasks we mentioned that involve image recognition, 
such as medical diagnosis and automated driving, but simplifed 
for testing and evaluating. In the experiments, we present pictures 
for human-AI teams to categorize into one of the 20 categories. 
Along the experiment, human and AI need to come up with a task 
assignment plan that determines which kind of images is better 
to be assigned to which member to label, in order to achieve high 
labeling accuracy and time efciency. We selected images from 12 
out of 20 categories, with the rest serving as confusing options 
for both human and AI. These 12 categories include barrel, bottle, 
bird, dog, box, lion, pan, rocket, sailboat, snake, van, and printer 
from ImageNet [65], covering animals, furniture, transportation, 
and appliances to reach a wider range of real-world objects [21]. 
The original pictures are chosen by two authors to ensure that they 
are clear and relatively recognizable. The 8 confusing options are 
derived from the categories whose appearances are similar to the 
selected images, such as including the “cat” label as a confusing 
option corresponds to the selected “dog” or “lion” label. All of the 
original images are then post-processed. 

Gaining inspirations from real-world tasks such as automated 
driving and medical diagnosis, we selected 7 representative im-
age post-process techniques. Through these techniques, we pro-
duced pictures with specifc characteristics proven to afect both 
AI and human’s performance in the above two real-world missions. 
These characteristics may be further explored, clarifed, and uti-
lized between human and AI to distinguish the tasks, thus forming 
a capability-aware shared mental model. The post-process tech-
niques are applied to the pictures with the same parameters that 
ensure the stability of the difculty for most human workers and AI. 
Furthermore, as in real-world scenarios, these basic post-process 
techniques could be combined, producing pictures with the com-
pound characteristics (these combinations are carefully selected for 
clear distinction, such as shown in Fig. 4 (i)). The post-processing 
techniques and their corresponding reasons for being selected are 
described as follows, corresponding to Fig.4: 

(1) Silhouette: the pictures are posterized using Portrace [70] 
to obtain the silhouette version of the original pictures. It 
simulates the malfunction in the automated driving scenario 
when the shutter does not allow the entrance of the correct 
amount of light through the lens [69], or when the environ-
ment is dark outside, as shown in Fig. 4 (b). It might cause 
image detection algorithms for automated driving to fail, as 
well as infuence the human drivers’ judgement. 

(2) Lowpass: the blurred version of the original picture is ob-
tained using the function “Gaussian flter” embedded in PIL 
package in python according to the size of the picture. It sim-
ulates the blurred vision during automated driving accrued 
when the camera is out of focus, or in environments such as 
rain or fog, as shown in Fig. 4 (c). This can likewise afect 
efective driver judgment and the outcome of autonomous 
driving image recognition. 

(3) Edge: the pictures’ edges are extracted using the Canny al-
gorithm embedded in OpenCV package. It also simulates 
the malfunction in the automated driving scenario when the 
shutter does not allow the entrance of the correct amount 
of light through the lens [69], or when the environment is 
suddenly turning bright outside, as shown in Fig. 4 (d). 

(4) Noise: random salt and pepper noise is applied to the pictures, 
as shown in Fig. 4 (e). It simulates the error during the noise 
reduction phases, which makes RGB cameras for automated 
driving cannot remove the noise correctly [69]. The excessive 
amount of noise would interfere with the algorithm and the 
driver’s judgment. 

(5) Texture: the pictures are stylized by transferring another tex-
ture picture’s style into the original picture [19]. It simulates 
the scenario in medical diagnosis that diferent stains and 
their concentration’s efect on the judgment of the physicians 
and the automated diagnostic algorithms in the diagnosis of 
pathology images [39], as shown in Fig. 4 (f). Generally, such 
images require image normalization for further diagnostic 
processing. 

(6) Rotate: the original pictures are rotated by 180 degrees. It 
simulates the rotation of the tissue to be observed due to 
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production errors in pathology image diagnosis, as shown 
in Fig. 4 (g). This can afect the physician’s ability to fnd the 
tissue to be observed, as well as the accuracy of some image 
recognition networks that perform medical diagnostics [80]. 

(7) Crop: the middle parts of the pictures are cropped and the 
rest area is flled with colors that are not consistent with 
the cropped edge (preferably black or white) for more dis-
tinction, as shown in Fig. 4 (h). It simulates the inability to 
observe intact tissue in pathology images due to improper 
manipulation resulting in parts of the tissue being folded, 
obscured, or stained by ink, etc. This again afects the di-
agnostic quality of the physician as well as the machine 
learning algorithm [39]. 

Therefore, for simplifcation, we only need to record opinions 
where scenario �� in tuple (�� , �� , �� ) is expressed using the com-
bination of the above basic 7 conditions. This simplifcation is ac-
ceptable since it requires a low threshold for human to distinguish 
these conditions with little dissent, hence leading to fast conver-
gence. And, AI is able to recognize these scenarios too, because 
recognizing the type of these process techniques is a standard task 
commonly used in the feld of computer vision as the auxiliary in-
formation [9, 75]. Furthermore, the selection of these 7 conditions is 
corresponding to [20]’s fndings that current image-detecting neu-
ral networks are biased towards these similar conditions like “tex-
ture” and “edge” in accuracy. In this way, if the AI has an evaluation 
as “I have an accuracy of 88.2% while labeling pictures processed 
with a combination of edge and rotate”, we only need to record 
“({���� + ������} , ��, 88.2%)” in � to represent such evaluation. As 
we mentioned before, for the experiment, we simplifed such eval-
uations to focus on scenarios when tasks should be handed over 
to the human. Hence, one step further, these opinions could be 
recorded as a series of binary vectors of length 7. For example, if 
the scenarios are organized in the order as in Fig.4, [0, 0, 0, 1, 0, 0, 1]
could represent that pictures post-processed with edge + rotate 
techniques should be handed over for human to label instead of AI. 
In the real experiment, we applied six combinations of post-process 
techniques to these pictures, which include lowpass, stylized + edge, 
silhouette + noise, crop + rotate, silhouette + stylized + rotate, rotate 
+ edge + noise. 

For comparison, there are 2 kinds of AI helpers that a user might 
encounter as a team member during the user study, they share the 
same capability (or accuracy) of labeling these images and iden-
tifying the combination of conditions of an image, but adapting 
diferent techniques while forming �. We trimmed a pre-trained 
convolutional neural network based on VGG19 [73], to reach dis-
tinctive accuracy for the six process types. For each process type, 
fxed recognition accuracy is given to the AI to simulate its diverse 
capabilities of identifying images with varied conditions. However, 
the AI’s ability to express � varies, one kind of AI could only com-
pute and give opinions using one of the seven conditions. The other 
kind of AI could actively combine conditions to compute and com-
pare the accuracy of diferent post-process while forming �. For 
example, the second kind of AI could record “[1, 0, 0, 0, 1, 0, 0] (tex-
ture + silhouette)” as a set of �� , while the frst kind of AI could only 
record “[1, 0, 0, 0, 0, 0, 0] (texture)” or “[0, 0, 0, 0, 1, 0, 0] (silhouette)” 

according to its comparison. Apparently, the second kind of AI has 
a better express ability of � than the frst kind. 

After careful selection, post-processing and training process, we 
obtain our pictures and AI agents for the human-AI cooperation 
task assignment. We conducted a pilot study that randomize the 
order of the pictures we chose for labeling for several users to 
label, and ensured that the pictures post-processed with the same 
techniques are relatively similar in difculty. To realize the process 
of the designed workfow shown in Fig.2 on our image labeling task 
and conduct contrast experiments, we designed a prototype system 
and user study as follows. 

4.3 User Study 
We designed a three-phase user study in our prototype system, 
which will be called experiment 1-3 (exp 1-3). We recruited 40 vol-
unteers for our exp 1-3. The participants are students from a local 
university, aged from 21 to 29, and have a relatively equal gender 
proportion of 18 women and 22 men. And according to the pre-
survey, they all have some sense of how AI works in categorizing 
pictures but are not informed of AI’s behavioral patterns or algo-
rithms in our experiment. During three formal experiments, users 
will be asked to label 120, 180, and 180 images in a fxed order, 
with each cooperation session (as in 2) containing 30 images. Pic-
tures processed with the same techniques appear relatively in the 
same proportion for each cooperation session of the experiment, 
to ensure human and AI both encounter enough cases of each pro-
cess and discover them. Also, we conducted a pilot study to ensure 
that for our experiment 1-3 at this length and difculty, the users’ 
learning efect can be ignored. 

The three formal experiments are completed in chronological or-
der with a time lag of at least 1 day by every user to avoid infuence 
among experiments. Users are free to choose the time to complete 
three experiments in order to avoid the infuence of the previous 
experiment. All of the users are familiar with the interfaces, inter-
actions we designed, and the several basic picture conditions we 
selected in advance, to avoid the hampering of the unfamiliarity of 
the system during experiments. And following the completion of all 
3 experiments, each user was asked several questions about the ex-
perience diference, the system preference and whether they would 
like to work with AI this way in the future, etc. The participants 
were paid twice the average hourly earnings of local areas per hour 
after the experiment, according to their actual participating hours. 

In the frst experiment, the users are required to label 120 pictures 
and are able to acquire the correct labels after the submission of 
their choices. And after completion, they are asked to self-evaluate 
the process types of the pictures that are hard for them to recognize, 
using the combination of our proposed seven conditions. The AI 
also fnishes labelling these pictures in the background and evalu-
ating itself, thus forming its own self-evaluation, also using seven 
proposed conditions. 

For the second experiment, the AI and user are required to label 
another 180 pictures together with only the human’s mental model 
� (HMM) for task assignment. Human-AI teams will enter negotia-
tion sessions after every 30 pictures of cooperation sessions, but 
here we only record human’s opinions, which represent � for the 
task assignment of the next cooperation session. The cooperative 
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Figure 5: (a) The interface design of cooperation sessions, which incorporates � or ��� above the images and utilizes the 
warning sign to represent a mild form of work assignment. Current � (or ���) include two agreed scenarios: “texture”, and 
“edges + noise”, and the current image is post-processed with “texture”, hence it is highlighted with a warning sign and an 
explanation illustrating that it’s highlighted because it’s processed with “texture”. Here the scores are what we described as 
cooperation scores. It is shown for the sake of recording. Since the meaning of cooperation scores is not provided to users, they 
are only requested to cooperate with AI as we instructed and correctly label the images without referring to the scores. (b) The 
interface design of negotiation sessions to express, and store human’s mental model on current team capability. (c) The interface 
design of the pop-up window representing negotiation sessions, showing the process of forming ��� (�). Here we highlight 
and mark the corresponding elements of building shared mental model in the paper (negotiation, ��� (� − 1), �(�), � (�), and 
��� (�)). The highlights and marks are invisible to users in the experiment. 

labeling of the pictures follows the interface as shown in Fig.5(a). 
In these interfaces, human-AI teams would not refer to the correct 
answers of the current images, simulating the real-world occasions 
that human-AI cooperate on tasks without a correct ground truth to 
refer to. And the � of the current session (annotated by the human 
during the last session) is shown above the images. And based on � , 
we highlight the images with a warning sign when the current task 
satisfes the � . This counts as a mild form of the work assignment: 
if an image in our interface is placed a warning sign, according to 
current � , the image is more suitable for distributing to human to 
label, according to human’s judgement. The warning sign would 
suggest human to choose “I don’t trust AI” under these cases. How-
ever, for the last cooperation session of 30 pictures (from the 151�� 

to 180�ℎ pictures), we enter the “Quick Sort Session”. It’s a more 
radical way to test our human-AI work assignment method: only 
the pictures satisfying � chosen by the end of the 120�ℎ picture 
are assigned to human workers, with AI labelling the rest of the 
images as the answer of the human-AI team. “Quick Sort Sessions” 
adapt relatively extreme ways of work assignment. We adapted 
this rather “radical” assignment strategy to explore the possibilities, 
and also temped to amplify the boost of a capability-aware shared 
mental model than the human mental model. It could also serve as 
a reference for the worst cases where consulting a human expert is 
very expensive. 

For the third experiment, we generally follow the same process 
that experiment 2 has, but utilize the shared mental model for task 
assignment. The AI and user are still required to label another 180 
pictures, enter negotiation sessions after every cooperation session 
of 30 pictures, and complete the fnal session of the experiment 
following the “Quick Sort” mode. However, in experiment 3, we con-
sidered both � and � to form shared mental model (���) among 
team members, thus containing the pop-up window designed in 
Fig.5(c) for every negotiation session. Here, human and AI work 
together to update the ��� . The system uses our proposed nego-
tiation methods to update ��� in our interface design shown in 

Fig.5(c). During experiment 3, we compared human-biased bitwise 
AND (&) and bitwise OR as negotiation methods to form ��� , as 
mentioned in section 3.3. Also, we compare the infuence of the 
two kinds of AI’s ability to express �, as described in section 4.1. 
Hence, we randomly divide users into groups of 10, with each group 
adapting one of the two methods and collaborating with one of the 
two kinds of AI. 

After the three experiments, we conducted short interviews 
with the participants, including three scale questions and a short 
open dialogue, to understand their perceptions and experiences 
of working with the AI to form a shared mental model during 
the experiment. The three scale questions asked the user to rate 
experiment 2 and experiment 3 on a scale of 1 for strongly disagree, 7 
for strongly agree, and 4 for neutral. The three statements included: 
I am confdent in the task assignment formed during the experiment; 
I have a better understanding of diferent situations in which the AI 
and I are prone to make mistakes; and I have a better understanding 
of the capabilities and limitations of the AI algorithm. 

4.4 Results 
We collected accuracy, session time length and cooperation scores 
along with the detailed user log throughout the experimental pro-
cess of the three experiments. For comparison, we divided our 
user-AI teams’ performance into the following seven cooperation 
modes: human-alone mode (marked as “Human”), AI-alone mode 
(marked as “AI”), human + AI mode (human makes the decision 
of labeling while AI’s labels are always available to humans, with-
out any task assignment, as in frst sessions of exp 2 and exp 3, 
marked as “Human+AI”), human + AI + human mental model mode 
(during experiment 2, marked as “Human+AI+HMM”), human + 
AI + capability-aware shared mental model mode (during experi-
ment 3, marked as “Human+AI+SMM”), quick sort + human mental 
model mode (last session of exp 2, marked as “Quick Sort+HMM”) 
and quick sort + shared mental model mode (last session of exp 3, 
marked as “Quick Sort+SMM”). 
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Figure 6: The plots of comparing the accuracy of seven diferent work modes from diferent perspectives. (a) Overall accuracy 
of 7 involved work modes. The colored bars indicate the mean accuracy of the corresponding work mode, and black lines in the 
middle extend to the upper quartile and the lower quartile of the data (** = p < .05, *** = p < .001, Mann-Whitney test). (b) The 
breakdown of average accuracy into scenarios (the combination of post-processing conditions) of 7 work modes. 

4.3.1 RQ1: How would CASMM for task assignment afect the ef-
ciency of Human-AI cooperation compared with no task assignment 
or human-generated task assignment? 

Our frst research question addresses the efectiveness of our pro-
posed capability-aware shared mental model to facilitate TAHAC 
tasks. We computed the average accuracy of human-AI teams cor-
rectly labelling the pictures under the above 7 working modes in 
Fig.6(a) and compare the average time per task under six work 
modes (since the average time of AI completing the tasks is negligi-
ble) in Fig.7(a). 

Accuracy-wise, as in Fig.6(a), it is worth noting that work modes 
with a mental model (either HMM or SMM) gain a rise in accuracy 
compared with the human+AI mode where AI decisions are only 
references to human. Although the accuracy of AI stays the same 
across work modes, introducing the mental model into cooperation 
and utilizing a warning reminder to embody the mental model do 
improve the team performance in terms of accuracy. The work 
modes that human-AI teams work with shared mental model out-
perform the modes with pure human’s mental model (p < 0.05), 
and we believe it is due to the negotiation between human and 
AI bridging to a more accurate shared mental model than human 
mental model. Even in the “Quick Sort” sessions where human are 
only given images selected by the shared mental model, it achieves 
higher accuracy than human+AI (p < 0.001). 

On the other side, time-wise, as in Fig.7(a), human+AI teams with 
mental models require much less time per task than those modes 
without mental model, with SMM reducing over 30% of the average 
time compared with human-alone mode (p < 0.001) and nearly 25% 
with the human+AI mode (p < 0.05). Moreover, for “Quick Sort” 
modes, since the pictures not qualifying the HMM/SMM are skipped 
for human and completed by AI in the background, the average 
time is largely reduced and even probably can be zero if the human 
completely trusts AI in labelling all the pictures. Given the average 
accuracy of the quick sort modes are competitive compared with the 
human-alone mode (HMM) and even the human+AI mode (SMM), 
it could be used as a trade-of to balance the accuracy and the time, 
taking much shorter time to achieve relatively high accuracy. 

We also compare the breakdown of accuracy into all the oc-
curring scenarios during experiments under diferent work modes 
in Fig.6(b). For most scenarios, the human-AI teams with shared 
mental model outperform the other modes since it enables human 
and AI to negotiate the opinions of confdence based on shared 
scenarios. For pictures processed with “Silhouette + Texture + Ro-
tation”, there is a signifcant accuracy decrease in human+AI mode 
compared with the human-alone working mode. This may be due 
to the fact that the extremely low accuracy of AI brings plenty of 
distractions for humans, resulting in more uncertainty in decision-
making. This is also close to the results mentioned in Bahrami et al. 
[2], since human and AI’s visual sensitivities in such scenario have 
a larger diference, resulting in “two heads worse than the better 
one”. Yet we can see that modes with human mental model and 
shared mental model help fll in such decrease during the coopera-
tion process, making the accuracy closer to the high accuracy of 
human-worker alone. And for those categories where AI performs 
worse than human workers in particular, work modes with shared 
mental model outperform more than the modes with human mental 
model. The above observation indicates that utilizing the shared 
mental model is of great help for cooperation not only when the 
AI is quite accurate but when the AI is extremely weak as well. 

Hence, in general, building SMM for TAHAC does help improve 
the efciency of human-AI cooperation, compared with no task 
assignment or the task assignment accord with the human’s mental 
model. It shows a promising time-accuracy balance to boost human-
AI cooperation. 

4.3.2 RQ2: How would the task assignment plan generated from 
exp 1-3 be diferent from the optimal task assignment plan? 

Our second research question aims at evaluating the validity 
of the task assignment plan that human and AI build together 
through the shared mental model we proposed. Hence, we utilized 
the proposed assignment strategy accuracy described in section 
3.4 for such evaluation. It is computed by comparing the statistical 
“best task assignment strategy” for each human-AI team with their 
actual task assigning plans formed during experiments. 
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Figure 7: (a) Comparison of average time per task under 6 involved work modes. (b) Comparison of average cooperation score 
per image under 5 involved work modes. (c) The assignment strategy accuracy of fve negotiation sessions that human-AI 
teams entered during experiments along the session (during session 5 the task assignment plan is not updated for comparing 
quick-sort modes) (** = p < .05, *** = p < .001, Mann-Whitney test). 

As in Fig.7(c), we could observe an overall rising trend for the 
assignment strategy accuracy as more negotiation sessions entered 
along the process of our experiment. And the task assignment based 
on the shared mental model (experiment 3) gained higher assign-
ment strategy accuracy than that based on the human mental model 
(experiment 2). The process of forming a capability-aware shared 
mental model through negotiations helps the human-AI teams to 
discover their team capabilities more comprehensively and thor-
oughly. Thus, it’s benefcial for leading toward more rational work 
assignments with higher assignment strategy accuracy. This also 
indicates that the iterative process we implemented is able to help 
build a shared mental model that leads towards an assignment of 
work close to human and AI’s real capabilities, with relatively few 
iterations. Interestingly, there exists a mild decrease in assignment 
strategy accuracy during the last session (by the end of the experi-
ment) for both experiment 2 and 3, it is probably because human-AI 
teams focus on revising current mental models rather than intro-
ducing new perspectives of capability evaluation as more sessions 
countered. 

4.3.3 RQ3: How would the negotiation methods infuence the shared 
mental model come up by human-AI teams? 

This research question explores the possible infuences of the 
negotiation methods we designed on the human-AI shared mental 
model. Therefore, we compare the assignment strategy accuracy 
of four groups of human-AI teams we divided during experiment 
3, which adopt diferent negotiation methods or interact with AI 
with diferent express ability of its opinions (�). As in Fig.8, the 
average of human-AI teams’ task assignment scores are generally 
higher when machines have the better express ability of � (Multi-
conditions). And when the negotiation sessions adapt human-biased 
bitwise AND method, the distribution of task assignment scores 
is more concentrated and shows a clearer rising tendency along 
the workfow session-wise. In general, using the human-biased 
bitwise AND method with an AI with a better ability of expressing 
� to negotiate helps human-AI teams come out with more accurate 
mental models with concentrated distribution. 

4.3.4 RQ4: How would building the capability-aware shared mental 
model help humans understand AI’s actual capability for a specifc 
task and then become more confdent about the task assignment plan? 

Our fourth research question aims at considering whether human 
becomes more aware of the AI’s actual capability, thus more actively 

cooperating with AI through building the shared mental model. 
Hence, we compare two aspects of the results: the cooperation score 
and subjective feedback. 

The cooperation scores per task under 6 work modes are shown 
in Fig.7(b) (Since human/AI-alone work modes do not involve coop-
eration, they do not produce cooperation scores). The cooperation 
score is introduced previously to additionally evaluate the efective-
ness and efciency of the human-AI cooperation. Clearly, human-AI 
teams with mental models take on higher cooperation scores than 
those without a mental model (p < 0.001). The result demonstrates 
the mental model helps push better human-AI cooperation ten-
dency, and assist human to interact and cooperate with AI more 
properly. SMM shows higher cooperation scores than the HMM, 
indicating that forming a shared mental model through negotia-
tion sessions makes a more efcient advancement for human to 
understand more about AI’s real capability. Note that in the quick 
sort mode, the shared mental model largely surpasses the others 
in scores, which reveals that the active involvement in negotiation 
helps participants get high cooperation with accurate strategies. 

Subjective scale questions’ distribution is shown in Fig.9. Gener-
ally, both experiment 2 (M = 4.60 on a 7-point scale) and 3 (M = 4.83) 
help participants to realize the capability of AI agents. However, 
participants were more aware of the ability diference between the 
AI algorithms and themselves during experiment 3 than experiment 
2 (p = 0.001). Also, participants report they are more confdent of 
the negotiated shared mental model (M = 4.97) in experiment 3 to 
make correct assignments than their own mental model (M = 4.33) 
in experiment 2 (p = 0.023). 

Similar opinions are expressed during open dialogues. Around 
2/3 of the total users (29 out of 40 users) prefer the cooperation 
mode in experiment 3 working with AI as a team. And more than 
70 percent of the users expect such type of cooperation with AI 
on real tasks in the future. For instance, “I like making decisions 
together with an AI helper. It shows a greater sense of interaction 
(P19, Female)”; “There are lots of post-processing techniques in-
volved and AI agents might fail in multiple occasions. But with the 
combination of AI’s scenarios with mine, I could fnd occasions 
that AI usually make mistakes more easily (P35, Male)”. 
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Figure 8: Comparison of the assignment strategy accuracy of four groups of human-AI teams across diferent sessions (30 
pictures per session) in experiment 3. The “Single-condition” and “Multi-condition” represent the AI’s capability of expressing 
�, which corresponds with the frst kind of AI and the second kind of AI in section 4.1. The negotiation method is accord with 
section 3.3. The mark “x” in the box denotes the mean value and the solid line in the box denotes the median value. (a) The 
similarity of the user group with � using multiple combinations of conditions and human-biases bitwise AND method. (b) 
Similarity of the user group with the same � as group 1 and human-biased bitwise OR method. (c) Similarity of the user group 
with � using single conditions and human-biases bitwise AND method. (d) Similarity of the user group with the same � as 
group 3 and human-biased bitwise OR method. Each subplot contains data from 10 users of the group. 

Figure 9: The scale distribution of subjective questions. The 
three statements on the left side of the fgure correspond to 
each of the three scale statements we proposed. Understand 
AI’s capability: I have a better understanding of the capabil-
ities and limitations of the AI algorithm; Learn about each 
member’s capability diference: I have a better understand-
ing of the situations in which the AI and I are prone to make 
mistakes; Confdent about the assignment: I am confdent in 
the task assignment formed during the experiment. 

5 IMPLICATIONS, LIMITATION AND FUTURE 
WORK 

5.1 Design Implications 
Improving the trust between human-AI cooperation: inter-
estingly, we notice that involving negotiation in the workfow of 
forming the shared mental model mitigates the trust issues to some 
extent. 70% of the participants (28 out of 40) agree that they feel 
more trusting in AI during exp 3 than exp 2, where participants 
build and revise shared mental model with AI through the negotia-
tion process. Participants are observed to trust the shared mental 
model they built and obtained a clear understanding of the AI’s 
decision. From the quantitative perspective, the cooperation score 
of the work mode with a shared mental model is much higher than 
the mode with human mental model and human only refer to AI 
mode. Since the cooperation score is directly infuenced by the 
acceptance of the grouping, which refects the trust of the current 
task assignment, it can be inferred that more trust spreads between 

participants and AI as the shared mental model forms. On the other 
hand, based on the subjective feedback, it is worth noting that most 
of the participants report to be more aware of when AI is likely 
to make a mistake, thus they become more confdent of the co-
operation results. This is consistent with our observations during 
the experiment: participants take less time questioning the AI’s 
answers, but tend to complete tasks relying on the warning signs 
according to the shared mental model. 

The applicability of capability-aware shared mental model: 
As described in Sec.4.1, our task design is based on several charac-
teristics of the real-world human-AI cooperation tasks. We simulate 
and simplify the work assignment problems that human-AI teams in 
practical tasks might encounter. Hence, similar tasks we mentioned 
like medical diagnoses or semi-autonomous driving can directly 
adapt our system for building and utilizing shared mental models 
with a few modifcations. Autonomous driving involves dynamic 
image recognition during actual operation, then the content be-
ing intercepted for analysis can be a short video or a key-frame 
where the current road conditions change. If the current system 
is used for medical diagnosis, sometimes the doctors and AI have 
to perform the task of locating the lesion. Hence, when defning 
medical image conditions for shared mental model, the human 
doctor or AI can provide the corresponding medical knowledge 
basis relating to making the diagnosis, and extract some common 
conditions of this knowledge to obtain a more accurate task clas-
sifcation to guide the task assignment. For these tasks, �� in our 
tuples to describe shared mental model could utilize conditions like 
“length of largest tumor ≤ 0.13” [83] or “rainy foggy environment + 
obstructed view” as scenarios. Also, such a shared mental model is 
not only limited to human-AI cooperation for image-based tasks. 
Using other dimensions of task features (e.g., numeric features, text 
features, etc.) for task classifcation to form shared mental models 
can also improve the efciency of human-AI cooperation. For ex-
ample, for the review of loan approval, some existing challenges 
include the difculty for human operators to determine whether 
all the automatically approved lenders meet specifc conditions 
for loan origination due to distrust and lack of understanding of 
the automated approval process or algorithms. We could utilize 
certain dimensions of lender characteristics as conditions to form 
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our proposed capability-aware shared mental model during the 
cooperation process. In this way, the human operators can quickly 
understand the AI algorithm’s capabilities and form a task assign-
ment based on human-AI’s consensus, identifying risky lenders 
that the AI algorithm might overlook during the lending process. 
For example, a lender with fair assets but a potentially risky in-
vestment may not be able to repay the loan, but AI might approve 
such lenders due to their fair assets. Hence, the combination of “fair 
assets + risky investments (which can be described by specifc data 
or corporation, etc.)” can be utilized to form the capability-aware 
shared mental model. 

Currently, the defnition of “condition” and “scenario” seems 
human-centered, which has been demonstrated to be efective. Al-
lowing the AI to defne the scenarios based on its decision bound-
aries may also be a feasible approach. Works in the area of feature 
visualization and AI behavioral interpretability and explainabil-
ity will further facilitate AI’s proactiveness in proposing some 
conditions or scenarios that make sense to human from their per-
spective [5, 6]. Such eforts may further facilitate and promote 
cooperation between human and AI with CASMM, or contribute 
to future various forms of human-AI cooperation, which could be a 
promising exploration direction in this area. 

Possible extra costs: In our experiments, the AI utilized the 
labeling results together with the ground truth provided in exp 
1 to form an assessment of its own and its human collaborators’ 
capability, and then negotiated with humans to gradually reach an 
agreement in the subsequent process of forming the shared mental 
model. In reality, we could also design simple warm-up sessions 
which include frequent situations for human users and AI to de-
velop initial capability assessments. Such a method is actually used 
by many existing mobile applications, which also try to collect the 
users’ interests and preferences along the tutorial tasks when they 
start working with a new user, or obtain relevant information about 
the user from other platforms to improve the initial AI recommen-
dations to human users [35]. For some extreme cases, assuming that 
a user does not have enough warm-up time to get along with the AI, 
we can also establish a built-in capability assessment of the general 
targeted user group and the AI itself, and continuously revise such 
assessment along with the updates of the shared mental model. We 
believe that such method is feasible based on our observation that 
the AI’s capability assessment of users obtained in exp 1 is also rel-
atively coarse, which could be similar for diferent users. However, 
in subsequent iterative negotiations with diferent users, it is able to 
lead diferent human-AI teams to reach a capability assessment and 
task assignment scheme close to their actual performance within 
about 30 minutes to 1 hour (the approximate duration of exp 3). 

Another noteworthy aspect is the additional time loss of nego-
tiation sessions we introduced, apart from cooperation working 
sessions. In Fig.7(a), when we computed the average time per task, 
we actually took into account the time loss of the negotiation ses-
sions. Yet, the results show that the human-AI time efciency is 
still better than the control group without shared mental model 
and negotiation sessions. It is probably due to the fact that human 
are more confdent of the cooperation and their task assignment 
strategy, thus paying less attention to frequently questioning the 
AI’s results or manually completing the labeling, since manually 
labelling the images is more time-consuming. In our experiments, 

we enter the negotiation sessions after every 30 pictures (tasks). 
In the future study or practical operations, the length of such gap 
can be adjusted according to the user’s ability or availability for 
negotiation. For example, for autonomous driving tasks, we can 
try to guide the driver to complete such negotiation processes dur-
ing the non-driving time or rest time to improve the cooperation 
experience. 

5.2 Limitation and Future Work 
We selected image labeling as our task to design the prototype 
system based on our shared mental model. We do not evaluate 
how people conceive a picture and categorize them from a cog-
nitive behavioral science perspective, thus the number of chosen 
post-processing techniques is limited for simplifcation. Also, we 
do not consider AI with dynamic strategies to adjust algorithms 
well-trained for diferent scenarios to achieve the best accuracy. The 
AI algorithm used for our experiments does not change with difer-
ent scenarios, and hence shows unsatisfying overall performance 
during the experiment we designed. However, such setting is in ac-
cordance with real-world occasions when merchandised AI agents 
have relatively stable performances but poor migration learning 
abilities, thus showing limited performance for complicated scenar-
ios. Human and AI need to cooperate properly to achieve better 
efcacy. 

The design of our mental model can also be improved if we take 
other variables into consideration. Such as whether to extend the 
list of conditions for simulating more complicated tasks, whether 
the confdence of human or AI would be treated as infuential 
factors to align decisions during human-AI cooperation, whether to 
show the AI’s numerical confdence in their choices, etc. We could 
also expand the complexity of negotiation methods other than 
bitwise operations that human-AI teams adapted for more efcient 
conversation. Other interaction channels such as eye movement and 
mouse movements, if could be collected during experiments and 
analyzed on the run, might also help to evaluate the engagement 
of the current user on the cooperation task. This could also take 
leaps forward towards more generalized and intelligent human-in-
the-loop hybrid intelligent systems. 

6 CONCLUSION 
In this work, we clarifed and designed the capability-aware shared 
mental model in task assignment based human-AI cooperation 
(TAHAC). It is a collaboratively negotiated, dynamically built model 
for grouping tasks based on human and AI’s capability that could 
further be mapped into the task assignment. It is designed with 
2 components: task grouping and negotiation. The task grouping 
takes on a basic representation unit as a tuple (�� , �� , �� ), which 
breaks down tasks’ properties into sets of scenarios relating to 
task difculties. The negotiation contains negotiation methods to 
dynamically merge the task grouping ideas raised by human and 
AI in an iterative form. We then implement a prototype system to 
evaluate capability-aware shared mental model via a collaborative 
image labelling task in a 3-phase user study. The results show that 
the introduced shared mental model could help with improving 
the accuracy and time efciency of human-AI teams. It also helps 
human-AI teams come up with a task assignment plan close to their 
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real capability within few iterations. Users feel more confdent 
while cooperating with AI, as well as form a better understanding 
of the AI’s capability and capability diference between human 
and AI. Our designed capability-aware shared mental model shows 
potentials for efective task assignments of human-AI cooperation 
for various real-world tasks. 

ACKNOWLEDGMENTS 
We are grateful to Professor Xiaohong Guan for his kind support of 
this work and anonymous reviewers for their insightful comments. 
This work was funded in part by the National Key R&D Program 
of China (No. 2018AAA0101501). 

REFERENCES 
[1] Saleema Amershi, Daniel S. Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira 

Nushi, Penny Collisson, Jina Suh, Shamsi T. Iqbal, Paul N. Bennett, Kori Inkpen, 
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in 
Computing Systems, CHI 2019, Glasgow, Scotland, UK, May 04-09, 2019, Stephen A. 
Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vassilis Kostakos (Eds.). ACM, 
Glasgow, Scotland, UK, 3. https://doi.org/10.1145/3290605.3300233 

[2] Bahador Bahrami, Karsten Olsen, Peter E Latham, Andreas Roepstorf, Geraint 
Rees, and Chris D Frith. 2010. Optimally interacting minds. Science 329, 5995 
(2010), 1081–1085. 

[3] Victoria A Banks, Katherine L Plant, and Neville A Stanton. 2018. Driver error or 
designer error: Using the Perceptual Cycle Model to explore the circumstances 
surrounding the fatal Tesla crash on 7th May 2016. Safety science 108 (2018), 
278–285. 

[4] Gagan Bansal, Besmira Nushi, Ece Kamar, Walter S. Lasecki, Daniel S. Weld, and 
Eric Horvitz. 2019. Beyond Accuracy: The Role of Mental Models in Human-AI 
Team Performance. In Proceedings of the Seventh AAAI Conference on Human 
Computation and Crowdsourcing, HCOMP 2019, Stevenson, WA, USA, October 28-30, 
2019, Edith Law and Jennifer Wortman Vaughan (Eds.). AAAI Press, Stevenson, 
WA, USA, 2–11. https://ojs.aaai.org/index.php/HCOMP/article/view/5285 

[5] Angie Boggust, Benjamin Hoover, Arvind Satyanarayan, and Hendrik Strobelt. 
2022. Shared Interest: Measuring Human-AI Alignment to Identify Recurring 
Patterns in Model Behavior. In CHI ’22: CHI Conference on Human Factors in 
Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5 May 2022, Simone 
D. J. Barbosa, Clif Lampe, Caroline Appert, David A. Shamma, Steven Mark 
Drucker, Julie R. Williamson, and Koji Yatani (Eds.). ACM, New Orleans, LA, 
USA, 10:1–10:17. https://doi.org/10.1145/3491102.3501965 

[6] Ángel Alexander Cabrera, Adam Perer, and Jason I Hong. 2023. Improving 
Human-AI Collaboration with Descriptions of AI Behavior. Proceedings of the 
ACM on Human-Computer Interaction 7, CSCW1 (2023), 136:1–136:21. 

[7] Tathagata Chakraborti, Sarath Sreedharan, Sachin Grover, and Subbarao Kamb-
hampati. 2019. Plan explanations as model reconciliation–an empirical study. In 
2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). 
IEEE, IEEE, Daegu, Korea (South), 258–266. 

[8] Stevie Chancellor, Zhiyuan Lin, Erica L. Goodman, Stephanie Zerwas, and Mun-
mun De Choudhury. 2016. Quantifying and Predicting Mental Illness Severity 
in Online Pro-Eating Disorder Communities. In Proceedings of the 19th ACM 
Conference on Computer-Supported Cooperative Work & Social Computing, CSCW 
2016, San Francisco, CA, USA, February 27 - March 2, 2016, Darren Gergle, Mered-
ith Ringel Morris, Pernille Bjørn, and Joseph A. Konstan (Eds.). ACM, San Fran-
cisco, CA, USA, 1169–1182. 

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geofrey E. Hinton. 2020. 
A Simple Framework for Contrastive Learning of Visual Representations. In 
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 
13-18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119). 
PMLR, Virtual Event, 1597–1607. http://proceedings.mlr.press/v119/chen20j.html 

[10] Meghan Clark, Mark W Newman, and Prabal Dutta. 2017. Devices and data and 
agents, oh my: How smart home abstractions prime end-user mental models. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 
1, 3 (2017), 1–26. 

[11] Sharolyn Converse, JA Cannon-Bowers, and E Salas. 1993. Shared mental models 
in expert team decision making. Individual and group decision making: Current 
issues 221 (1993), 221–46. 

[12] KJW Craik. 1943. The Nature of Explanation Cambridge University Press: Cam-
bridge. 

[13] Leslie A DeChurch and Jessica R Mesmer-Magnus. 2010. The cognitive under-
pinnings of efective teamwork: a meta-analysis. Journal of applied psychology 
95, 1 (2010), 32. 

[14] Maryam Banitalebi Dehkordi, Reda Mansy, Abolfazl Zaraki, Arpit Singh, and 
Rossitza Setchi. 2021. Explainability in human-robot teaming. Procedia Computer 
Science 192 (2021), 3487–3496. 

[15] Michael Derntl, Renate Motschnig-Pitrik, and Kathrin Figl. 2006. Using teams, 
peer-and self evaluation in blended learning classes. In Proceedings. Frontiers in 
Education. 36th Annual Conference. IEEE, IEEE, San Diego, CA, USA, 15–20. 

[16] David Eccles. 2010. The coordination of labour in sports teams. International 
Review of Sport and Exercise Psychology 3, 2 (2010), 154–170. https://doi.org/10. 
1080/1750984X.2010.519400 arXiv:https://doi.org/10.1080/1750984X.2010.519400 

[17] Shirine El Zaatari, Mohamed Marei, Weidong Li, and Zahid Usman. 2019. Cobot 
programming for collaborative industrial tasks: An overview. Robotics and Au-
tonomous Systems 116 (2019), 162–180. 

[18] Jonnro Erasmus, Irene Vanderfeesten, Konstantinos Traganos, Ad Kleingeld, Paul 
Grefen, et al. 2018. A method to enable ability-based human resource allocation 
in business process management systems. In IFIP Working Conference on the 
Practice of Enterprise Modeling. Springer, Springer, Vienna, Austria, 37–52. 

[19] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style 
Transfer Using Convolutional Neural Networks. In 2016 IEEE Conference on 
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 
27-30, 2016. IEEE Computer Society, Las Vegas, NV, USA, 2414–2423. https: 
//doi.org/10.1109/CVPR.2016.265 

[20] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. 
Wichmann, and Wieland Brendel. 2019. ImageNet-trained CNNs are biased 
towards texture; increasing shape bias improves accuracy and robustness. In 7th 
International Conference on Learning Representations, ICLR 2019, New Orleans, 
LA, USA, May 6-9, 2019. OpenReview.net, New Orleans, LA, USA, 22. https: 
//openreview.net/forum?id=Bygh9j09KX 

[21] Robert Geirhos, Carlos R. Medina Temme, Jonas Rauber, Heiko H. Schütt, Matthias 
Bethge, and Felix A. Wichmann. 2018. Generalisation in humans and deep neural 
networks. In Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 
2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kris-
ten Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). Curran Associates, 
Inc., Montréal, Canada, 7549–7561. 

[22] Katy Ilonka Gero, Zahra Ashktorab, Casey Dugan, Qian Pan, James Johnson, 
Werner Geyer, Maria Ruiz, Sarah Miller, David R. Millen, Murray Campbell, 
Sadhana Kumaravel, and Wei Zhang. 2020. Mental Models of AI Agents in 
a Cooperative Game Setting. In CHI ’20: CHI Conference on Human Factors in 
Computing Systems, Honolulu, HI, USA, April 25-30, 2020, Regina Bernhaupt, 
Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna McGrenere, Andy 
Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjøn, Shengdong Zhao, Bri-
ane Paul Samson, and Rafal Kocielnik (Eds.). ACM, Honolulu, HI, USA, 1–12. 
https://doi.org/10.1145/3313831.3376316 

[23] Felix Gervits, Dean Thurston, Ravenna Thielstrom, Terry Fong, Quinn Pham, and 
Matthias Scheutz. 2020. Toward Genuine Robot Teammates: Improving Human-
Robot Team Performance Using Robot Shared Mental Models. In Proceedings of 
the 19th International Conference on Autonomous Agents and Multiagent Systems, 
AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, Amal El Fallah Seghrouchni, 
Gita Sukthankar, Bo An, and Neil Yorke-Smith (Eds.). International Foundation for 
Autonomous Agents and Multiagent Systems, Auckland, New Zealand, 429–437. 
https://doi.org/10.5555/3398761.3398815 

[24] Aaron Glick, Mackenzie Clayton, Nikola Angelov, and Jennifer Chang. 2022. 
Impact of explainable artifcial intelligence assistance on clinical decision-making 
of novice dental clinicians. JAMIA open 5, 2 (2022), ooac031. 

[25] David Gunning, Mark Stefk, Jaesik Choi, Timothy Miller, Simone Stumpf, and 
Guang-Zhong Yang. 2019. XAI—Explainable artifcial intelligence. Science Robot-
ics 4, 37 (2019), 7120. 

[26] Danula Eranjith Hettiachchi Mudiyanselage. 2021. Task assignment using worker 
cognitive ability and context to improve data quality in crowdsourcing. Ph. D. 
Dissertation. The University of Melbourne, Victoria, Australia. 

[27] Andreas Holzinger. 2018. From machine learning to explainable AI. In 2018 world 
symposium on digital intelligence for systems and machines (DISA). IEEE, IEEE, 
Košice, Slovakia, 55–66. 

[28] Andreas Holzinger, Anna Saranti, Christoph Molnar, Przemyslaw Biecek, and 
Wojciech Samek. 2020. Explainable AI methods-a brief overview. In xxAI - Beyond 
Explainable AI - International Workshop, Held in Conjunction with ICML 2020, July 
18, 2020, Vienna, Austria, Revised and Extended Papers (Lecture Notes in Computer 
Science, Vol. 13200), Andreas Holzinger, Randy Goebel, Ruth Fong, Taesup Moon, 
Klaus-Robert Müller, and Wojciech Samek (Eds.). Springer, Springer, Vienna, 
Austria, 13–38. https://doi.org/10.1007/978-3-031-04083-2_2 

[29] Catholijn M. Jonker, M. Birna van Riemsdijk, and Bas Vermeulen. 2010. Shared 
Mental Models - A Conceptual Analysis. In Coordination, Organizations, Insti-
tutions, and Norms in Agent Systems VI - COIN 2010 International Workshops, 
COIN@AAMAS 2010, Toronto, Canada, May 2010, COIN@MALLOW 2010, Lyon, 
France, August 2010, Revised Selected Papers (Lecture Notes in Computer Science, 
Vol. 6541), Marina De Vos, Nicoletta Fornara, Jeremy V. Pitt, and George A. Vouros 
(Eds.). Springer, Lyon, France, 132–151. https://doi.org/10.1007/978-3-642-21268-
0_8 

https://doi.org/10.1145/3290605.3300233
https://ojs.aaai.org/index.php/HCOMP/article/view/5285
https://doi.org/10.1145/3491102.3501965
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1080/1750984X.2010.519400
https://doi.org/10.1080/1750984X.2010.519400
https://arxiv.org/abs/https://doi.org/10.1080/1750984X.2010.519400
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1109/CVPR.2016.265
https://openreview.net/forum?id=Bygh9j09KX
https://openreview.net/forum?id=Bygh9j09KX
https://doi.org/10.1145/3313831.3376316
https://doi.org/10.5555/3398761.3398815
https://doi.org/10.1007/978-3-031-04083-2_2
https://doi.org/10.1007/978-3-642-21268-0_8
https://doi.org/10.1007/978-3-642-21268-0_8
https://OpenReview.net


Interaction of Thoughts: Towards Mediating Task Assignment in Human-AI Cooperation with a CASMM CHI ’23, April 23–28, 2023, Hamburg, Germany 

[30] Ece Kamar. 2016. Directions in Hybrid Intelligence: Complementing AI Systems 
with Human Intelligence. In Proceedings of the Twenty-Fifth International Joint 
Conference on Artifcial Intelligence (New York, New York, USA) (IJCAI’16). AAAI 
Press, New York, NY, USA, 4070–4073. 

[31] Ece Kamar, Severin Hacker, and Eric Horvitz. 2012. Combining human and 
machine intelligence in large-scale crowdsourcing. In International Conference on 
Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, June 
4-8, 2012 (3 Volumes), Wiebe van der Hoek, Lin Padgham, Vincent Conitzer, and 
Michael Winikof (Eds.). IFAAMAS, Valencia, Spain, 467–474. http://dl.acm.org/ 
citation.cfm?id=2343643 

[32] H Kaur, A Williams, and WS Lasecki. 2019. Building shared mental models 
between humans and ai for efective collaboration. In Proceedings of CHI 2019 
Workshop on Where is the Human? Bridging the Gap Between AI and HCI, Glasgow, 
Scotland. ACM, Glasgow, Scotland, 7. 

[33] Matthew Kay, Tara Kola, Jessica R. Hullman, and Sean A. Munson. 2016. When 
(ish) is My Bus?: User-centered Visualizations of Uncertainty in Everyday, Mobile 
Predictive Systems. In Proceedings of the 2016 CHI Conference on Human Factors 
in Computing Systems, San Jose, CA, USA, May 7-12, 2016, Jofsh Kaye, Allison 
Druin, Clif Lampe, Dan Morris, and Juan Pablo Hourcade (Eds.). ACM, San Jose, 
CA, USA, 5092–5103. https://doi.org/10.1145/2858036.2858558 

[34] William G Kennedy and J Gregory Trafton. 2007. Using simulations to model 
shared mental models. Technical Report. NAVAL RESEARCH LAB WASHINGTON 
DC CENTER FOR APPLIED RESEARCH IN ARTIFICIAL . . . . 

[35] Julia Kiseleva, Alexander Tuzhilin, Jaap Kamps, Melanie J. I. Müller, Lucas 
Bernardi, Chad Davis, Ivan Kovacek, Mats Stafseng Einarsen, and Djoerd Hiem-
stra. 2016. Beyond Movie Recommendations: Solving the Continuous Cold Start 
Problem in E-commerce Recommendations. CoRR abs/1607.07904 (2016), 11. 
arXiv:1607.07904 http://arxiv.org/abs/1607.07904 

[36] Lucy Van Kleunen and Stephen Voida. 2019. Challenges in supporting social 
practices around personal data for long-term mental health management. In 
Proceedings of the 2019 ACM International Joint Conference on Pervasive and 
Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium 
on Wearable Computers, UbiComp/ISWC 2019 Adjunct, London, UK, September 
9-13, 2019, Robert Harle, Katayoun Farrahi, and Nicholas D. Lane (Eds.). ACM, 
London, UK, 944–948. https://doi.org/10.1145/3341162.3346273 

[37] Richard Klimoski and Susan Mohammed. 1994. Team mental model: Construct 
or metaphor? Journal of management 20, 2 (1994), 403–437. 

[38] Masaki Kobayashi, Kei Wakabayashi, and Atsuyuki Morishima. 2021. Human+AI 
Crowd Task Assignment Considering Result Quality Requirements. In Proceedings 
of the Ninth AAAI Conference on Human Computation and Crowdsourcing, HCOMP 
2021, virtual, November 14-18, 2021, Ece Kamar and Kurt Luther (Eds.). AAAI Press, 
Virtual, 97–107. https://ojs.aaai.org/index.php/HCOMP/article/view/18943 

[39] Sonal Kothari, John H Phan, Todd H Stokes, and May D Wang. 2013. Pathology 
imaging informatics for quantitative analysis of whole-slide images. Journal of 
the American Medical Informatics Association 20, 6 (2013), 1099–1108. 

[40] Walter S Lasecki. 2019. On facilitating human-computer interaction via hybrid 
intelligence systems. In Proceedings of the 7th annual ACM Conference on Collective 
Intelligence. ACM. ACM, Pittsburgh, USA, 1:1–1:5. 

[41] Sunok Lee, Minji Cho, and Sangsu Lee. 2020. What If Conversational Agents 
Became Invisible? Comparing Users’ Mental Models According to Physical Entity 
of AI Speaker. Proceedings of the ACM on Interactive, Mobile, Wearable and 
Ubiquitous Technologies 4, 3 (2020), 1–24. 

[42] Lan Li, Tina Lassiter, Joohee Oh, and Min Kyung Lee. 2021. Algorithmic Hiring 
in Practice: Recruiter and HR Professional’s Perspectives on AI Use in Hiring. 
In AIES ’21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, 
May 19-21, 2021, Marion Fourcade, Benjamin Kuipers, Seth Lazar, and Deirdre K. 
Mulligan (Eds.). ACM, Virtual Event, USA, 166–176. https://doi.org/10.1145/ 
3461702.3462531 

[43] Yu Liangru Li Yi and Qiu Dong. 2020. Review of Cooperation Mode Between 
Human and Artifcial Intelligence. Journal of Intelligence 39 (2020), 137–143. 

[44] Claire Liang, Julia Proft, Erik Andersen, and Ross A. Knepper. 2019. Implicit 
Communication of Actionable Information in Human-AI teams. In Proceedings 
of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, 
Glasgow, Scotland, UK, May 04-09, 2019, Stephen A. Brewster, Geraldine Fitz-
patrick, Anna L. Cox, and Vassilis Kostakos (Eds.). ACM, Glasgow, Scotland, UK, 
95. https://doi.org/10.1145/3290605.3300325 

[45] Geert Litjens, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka 
Balkenhol, Peter Bult, Altuna Halilovic, Meyke Hermsen, Rob van de Loo, Rob 
Vogels, et al. 2018. 1399 H&E-stained sentinel lymph node sections of breast 
cancer patients: the CAMELYON dataset. GigaScience 7, 6 (2018), giy065. 

[46] Alan Lundgard, Yiwei Yang, Maya L. Foster, and Walter S. Lasecki. 2018. Bolt: 
Instantaneous Crowdsourcing via Just-in-Time Training. In Proceedings of the 
2018 CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, 
QC, Canada, April 21-26, 2018, Regan L. Mandryk, Mark Hancock, Mark Perry, 
and Anna L. Cox (Eds.). ACM, Montreal, QC, Canada, 467. https://doi.org/10. 
1145/3173574.3174041 

[47] Lanssie Mingyue Ma, Terrence Fong, Mark J. Micire, Yunkyung Kim, and Karen M. 
Feigh. 2017. Human-Robot Teaming: Concepts and Components for Design. In 

Field and Service Robotics, Results of the 11th International Conference, FSR 2017, 
Zurich, Switzerland, 12-15 September 2017 (Springer Proceedings in Advanced 
Robotics, Vol. 5), Marco Hutter and Roland Siegwart (Eds.). Springer, Zurich, 
Switzerland, 649–663. https://doi.org/10.1007/978-3-319-67361-5_42 

[48] John E Mathieu, Tonia S Hefner, Gerald F Goodwin, Eduardo Salas, and Janis A 
Cannon-Bowers. 2000. The infuence of shared mental models on team process 
and performance. Journal of applied psychology 85, 2 (2000), 273. 

[49] Gerald Matthews, April Rose Panganiban, Jinchao Lin, Michael Long, and 
Michaela Schwing. 2021. Chapter 3 - Super-machines or sub-humans: Men-
tal models and trust in intelligent autonomous systems. In Trust in Human-Robot 
Interaction, Chang S. Nam and Joseph B. Lyons (Eds.). Academic Press, Salt Lake 
City, UT, USA, 59–82. https://doi.org/10.1016/B978-0-12-819472-0.00003-4 

[50] Tim Miller. 2019. Explanation in artifcial intelligence: Insights from the social 
sciences. Artifcial intelligence 267 (2019), 1–38. 

[51] Susan Mohammed and Brad C Dumville. 2001. Team mental models in a team 
knowledge framework: Expanding theory and measurement across disciplinary 
boundaries. Journal of Organizational Behavior: The International Journal of 
Industrial, Occupational and Organizational Psychology and Behavior 22, 2 (2001), 
89–106. 

[52] An T. Nguyen, Aditya Kharosekar, Saumyaa Krishnan, Siddhesh Krishnan, Eliza-
beth Tate, Byron C. Wallace, and Matthew Lease. 2018. Believe it or not: Designing 
a Human-AI Partnership for Mixed-Initiative Fact-Checking. In The 31st Annual 
ACM Symposium on User Interface Software and Technology, UIST 2018, Berlin, Ger-
many, October 14-17, 2018, Patrick Baudisch, Albrecht Schmidt, and Andy Wilson 
(Eds.). ACM, Berlin, Germany, 189–199. https://doi.org/10.1145/3242587.3242666 

[53] Stefanos Nikolaidis and Julie Shah. 2012. Human-robot teaming using shared 
mental models. In Proceedings of the seventh annual ACM/IEEE international 
conference on Human-Robot Interaction 2012 Workshop on Human-Agent-Robot 
Teamwork, Boston, Massachusetts, USA. Association for Computing Machinery, 
Boston, Massachusetts, USA, 6. 

[54] Besmira Nushi, Ece Kamar, and Eric Horvitz. 2018. Towards Accountable AI: 
Hybrid Human-Machine Analyses for Characterizing System Failure. In Proceed-
ings of the Sixth AAAI Conference on Human Computation and Crowdsourcing, 
HCOMP 2018, Zürich, Switzerland, July 5-8, 2018, Yiling Chen and Gabriella Kazai 
(Eds.). AAAI Press, Zürich, Switzerland, 126–135. https://aaai.org/ocs/index.php/ 
HCOMP/HCOMP18/paper/view/17930 

[55] Mike Oaksford and Nick Chater. 2001. The probabilistic approach to human 
reasoning. Trends in cognitive sciences 5, 8 (2001), 349–357. 

[56] Kristin E. Oleson, Deborah R. Billings, Vivien Kocsis, Jessie Y. C. Chen, and 
Peter A. Hancock. 2011. Antecedents of trust in human-robot collaborations. In 
IEEE International Inter-Disciplinary Conference on Cognitive Methods in Situation 
Awareness and Decision Support, CogSIMA 2011, Miami, FL, USA, February 21-24, 
2011, Gabriel Jakobson, Mica R. Endsley, and Mitch Kokar (Eds.). IEEE, Miami, 
FL, USA, 175–178. https://doi.org/10.1109/COGSIMA.2011.5753439 

[57] Scott Ososky. 2013. Infuence of task-role mental models on human interpretation of 
robot motion behavior. Ph. D. Dissertation. University of Central Florida, Orlando, 
Florida, USA. Advisor(s) Florian G. Jentsch. 

[58] Scott Ososky, David Schuster, Florian Jentsch, Stephen Fiore, Randall Shumaker, 
Christian Lebiere, Unmesh Kurup, Jean Oh, and Anthony Stentz. 2012. The impor-
tance of shared mental models and shared situation awareness for transforming 
robots from tools to teammates. In Unmanned systems technology XIV, Vol. 8387. 
International Society for Optics and Photonics, International Society for Optics 
and Photonics, Baltimore, Maryland, United States, 838710. 

[59] Nicholas Paul and ChanJin Chung. 2018. Application of HDR algorithms to 
solve direct sunlight problems when autonomous vehicles using machine vision 
systems are driving into sun. Computers in Industry 98 (2018), 192–196. 

[60] Erasmo Purifcato, Flavio Lorenzo, Francesca Fallucchi, and Ernesto William 
De Luca. 2022. The Use of Responsible Artifcial Intelligence Techniques in the 
Context of Loan Approval Processes. International Journal of Human–Computer 
Interaction 0, 0 (2022), 1–20. https://doi.org/10.1080/10447318.2022.2081284 

[61] Katyanna Quach. 2020. Watch an oblivious Tesla Model 3 smash into an over-
turned truck on a highway ’while under autopilot’. https://www.theregister. 
com/2020/06/02/tesla_car_crash/ 

[62] Yosef S Razin, Jack Gale, Jiaojiao Fan, Jaznae’ Smith, and Karen M Feigh. 2021. 
Watch For Failing Objects: What Inappropriate Compliance Reveals About Shared 
Mental Models In Autonomous Cars. In Proceedings of the Human Factors and 
Ergonomics Society Annual Meeting, Vol. 65. SAGE Publications Sage CA: Los 
Angeles, CA, Los Angeles, CA, USA, 643–647. 

[63] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I 
Trust You?": Explaining the Predictions of Any Classifer. In Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining (San Francisco, California, USA) (KDD ’16). Association for Computing 
Machinery, New York, NY, USA, 1135–1144. https://doi.org/10.1145/2939672. 
2939778 

[64] Peter J Robe. 2021. Designing a Pair Programming Conversational Agent. Ph. D. 
Dissertation. The University of Tulsa. 

[65] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, 
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. 

http://dl.acm.org/citation.cfm?id=2343643
http://dl.acm.org/citation.cfm?id=2343643
https://doi.org/10.1145/2858036.2858558
https://arxiv.org/abs/1607.07904
http://arxiv.org/abs/1607.07904
https://doi.org/10.1145/3341162.3346273
https://ojs.aaai.org/index.php/HCOMP/article/view/18943
https://doi.org/10.1145/3461702.3462531
https://doi.org/10.1145/3461702.3462531
https://doi.org/10.1145/3290605.3300325
https://doi.org/10.1145/3173574.3174041
https://doi.org/10.1145/3173574.3174041
https://doi.org/10.1007/978-3-319-67361-5_42
https://doi.org/10.1016/B978-0-12-819472-0.00003-4
https://doi.org/10.1145/3242587.3242666
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17930
https://aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17930
https://doi.org/10.1109/COGSIMA.2011.5753439
https://doi.org/10.1080/10447318.2022.2081284
https://www.theregister.com/2020/06/02/tesla_car_crash/
https://www.theregister.com/2020/06/02/tesla_car_crash/
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778


CHI ’23, April 23–28, 2023, Hamburg, Germany 

Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge. 
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https: 
//doi.org/10.1007/s11263-015-0816-y 

[66] Mike Schaekermann, Graeme Beaton, Elaheh Sanoubari, Andrew Lim, Kate Lar-
son, and Edith Law. 2020. Ambiguity-aware AI Assistants for Medical Data Analy-
sis. In CHI ’20: CHI Conference on Human Factors in Computing Systems, Honolulu, 
HI, USA, April 25-30, 2020, Regina Bernhaupt, Florian ’Floyd’ Mueller, David 
Verweij, Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix 
Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul Samson, and Rafal Kocielnik 
(Eds.). ACM, Honolulu, HI, USA, 1–14. https://doi.org/10.1145/3313831.3376506 

[67] Mike Schaekermann, Carrie J. Cai, Abigail E. Huang, and Rory Sayres. 2020. 
Expert Discussions Improve Comprehension of Difcult Cases in Medical Image 
Assessment. In CHI ’20: CHI Conference on Human Factors in Computing Systems, 
Honolulu, HI, USA, April 25-30, 2020, Regina Bernhaupt, Florian ’Floyd’ Mueller, 
David Verweij, Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, 
Alix Goguey, Pernille Bjøn, Shengdong Zhao, Briane Paul Samson, and Rafal 
Kocielnik (Eds.). ACM, Honolulu, HI, USA, 1–13. https://doi.org/10.1145/3313831. 
3376290 

[68] Matthias Scheutz. 2013. Computational Mechanisms for Mental Models in 
Human-Robot Interaction. In Virtual Augmented and Mixed Reality. Design-
ing and Developing Augmented and Virtual Environments - 5th International 
Conference, VAMR 2013, Held as Part of HCI International 2013, Las Vegas, NV, 
USA, July 21-26, 2013, Proceedings, Part I (Lecture Notes in Computer Science, 
Vol. 8021), Randall Shumaker (Ed.). Springer, Las Vegas, NV, USA, 304–312. 
https://doi.org/10.1007/978-3-642-39405-8_34 

[69] Francesco Secci and Andrea Ceccarelli. 2020. On failures of RGB cameras and their 
efects in autonomous driving applications. In 31st IEEE International Symposium 
on Software Reliability Engineering, ISSRE 2020, Coimbra, Portugal, October 12-15, 
2020, Marco Vieira, Henrique Madeira, Nuno Antunes, and Zheng Zheng (Eds.). 
IEEE, Coimbra, Portugal, 13–24. https://doi.org/10.1109/ISSRE5003.2020.00011 

[70] Peter Selinger. 2003. Potrace–Transforming bitmaps into vector graphics. 
[EB/OL]. http://potrace.sourceforge.net/#license Accessed July 22, 2021. 

[71] Donghee Shin. 2021. The efects of explainability and causability on perception, 
trust, and acceptance: Implications for explainable AI. International Journal of 
Human-Computer Studies 146 (2021), 102551. 

[72] Ben Shneiderman. 2022. Human-Centered AI: Ensuring Human Control While In-
creasing Automation. In Proceedings of the 5th Workshop on Human Factors in Hy-
pertext (Barcelona, Spain) (HUMAN ’22). Association for Computing Machinery, 
New York, NY, USA, Article 1, 2 pages. https://doi.org/10.1145/3538882.3542790 

[73] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on 
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). OpenReview.net, 
San Diego, CA, USA, 14. http://arxiv.org/abs/1409.1556 

[74] Kimberly A Smith-Jentsch, John E Mathieu, and Kurt Kraiger. 2005. Investigating 
linear and interactive efects of shared mental models on safety and efciency in 
a feld setting. Journal of applied psychology 90, 3 (2005), 523. 

[75] Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, and Tomas Pfster. 2021. 
Learning and Evaluating Representations for Deep One-Class Classifcation. In 
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, 
Austria, May 3-7, 2021. OpenReview.net, Virtual, 32. https://openreview.net/ 
forum?id=HCSgyPUfeDj 

[76] Jean Y Song, Raymond Fok, Juho Kim, and Walter S Lasecki. 2019. FourEyes: 
Leveraging Tool Diversity as a Means to Improve Aggregate Accuracy in Crowd-
sourcing. ACM Transactions on Interactive Intelligent Systems (TiiS) 10, 1 (2019), 
1–30. 

Z.Y. He et al. 

[77] Jean Y. Song, Stephan J. Lemmer, Michael Xieyang Liu, Shiyan Yan, Juho Kim, 
Jason J. Corso, and Walter S. Lasecki. 2019. Popup: reconstructing 3D video 
using particle fltering to aggregate crowd responses. In Proceedings of the 24th 
International Conference on Intelligent User Interfaces, IUI 2019, Marina del Ray, 
CA, USA, March 17-20, 2019, Wai-Tat Fu, Shimei Pan, Oliver Brdiczka, Polo Chau, 
and Gaelle Calvary (Eds.). ACM, Marina del Ray, CA, USA, 558–569. https: 
//doi.org/10.1145/3301275.3302305 

[78] Rooji Sugathan, Shaji Khan, Dinesh Mirchandani, and Ashok Subramanian. 2020. 
System Usage: A Shared Mental Model Perspective. Ph. D. Dissertation. University 
of Missouri - Saint Louis. Advisor(s) Vicki, Sauter,. AAI27960557. 

[79] Piet Van den Bossche, Wim Gijselaers, Mien Segers, Geert Woltjer, and Paul 
Kirschner. 2011. Team learning: building shared mental models. Instructional 
Science 39, 3 (2011), 283–301. 

[80] Jeroen Van der Laak, Geert Litjens, and Francesco Ciompi. 2021. Deep learning 
in histopathology: the path to the clinic. Nature medicine 27, 5 (2021), 775–784. 

[81] Lev Velykoivanenko, Kavous Salehzadeh Niksirat, Noé Zuferey, Mathias Hum-
bert, Kévin Huguenin, and Mauro Cherubini. 2021. Are Those Steps Worth Your 
Privacy? Fitness-Tracker Users’ Perceptions of Privacy and Utility. Proceedings of 
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 4 (2021), 
1–41. 

[82] Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred 
Hohman, Minsuk Kahng, and Duen Horng Polo Chau. 2020. CNN explainer: 
Learning convolutional neural networks with interactive visualization. IEEE 
Transactions on Visualization and Computer Graphics 27, 2 (2020), 1396–1406. 

[83] Bryan Wilder, Eric Horvitz, and Ece Kamar. 2020. Learning to Complement 
Humans. In Proceedings of the Twenty-Ninth International Joint Conference on 
Artifcial Intelligence, IJCAI-20, Christian Bessiere (Ed.). International Joint Con-
ferences on Artifcial Intelligence Organization, Virtual, 1526–1533. https: 
//doi.org/10.24963/ijcai.2020/212 Main track. 

[84] Ming Yin, Jennifer Wortman Vaughan, and Hanna M. Wallach. 2019. Understand-
ing the Efect of Accuracy on Trust in Machine Learning Models. In Proceedings 
of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019, 
Glasgow, Scotland, UK, May 04-09, 2019, Stephen A. Brewster, Geraldine Fitz-
patrick, Anna L. Cox, and Vassilis Kostakos (Eds.). ACM, Glasgow, Scotland, UK, 
279. https://doi.org/10.1145/3290605.3300509 

[85] Luyao Yuan, Xiaofeng Gao, Zilong Zheng, Mark Edmonds, Ying Nian Wu, Fed-
erico Rossano, Hongjing Lu, Yixin Zhu, and Song-Chun Zhu. 2022. In situ bidi-
rectional human-robot value alignment. Science robotics 7, 68 (2022), eabm4183. 

[86] Nor’ain Mohd Yusof and Siti Salwah Salim. 2020. Shared Mental Model Pro-
cessing in Visualization Technologies: A Review of Fundamental Concepts and 
a Guide to Future Research in Human-Computer Interaction. In Engineering 
Psychology and Cognitive Ergonomics. Mental Workload, Human Physiology, and 
Human Energy - 17th International Conference, EPCE 2020, Held as Part of the 
22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19-
24, 2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12186), 
Don Harris and Wen-Chin Li (Eds.). Springer, Copenhagen, Denmark, 238–256. 
https://doi.org/10.1007/978-3-030-49044-7_20 

[87] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding 
Convolutional Networks. In Computer Vision - ECCV 2014 - 13th European 
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I (Lec-
ture Notes in Computer Science, Vol. 8689), David J. Fleet, Tomás Pajdla, Bernt 
Schiele, and Tinne Tuytelaars (Eds.). Springer, Zurich, Switzerland, 818–833. 
https://doi.org/10.1007/978-3-319-10590-1_53 

[88] Rui Zhang, Nathan J McNeese, Guo Freeman, and Geof Musick. 2021. " An Ideal 
Human" Expectations of AI Teammates in Human-AI Teaming. Proceedings of 
the ACM on Human-Computer Interaction 4, CSCW3 (2021), 1–25. 

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3313831.3376506
https://doi.org/10.1145/3313831.3376290
https://doi.org/10.1145/3313831.3376290
https://doi.org/10.1007/978-3-642-39405-8_34
https://doi.org/10.1109/ISSRE5003.2020.00011
http://potrace.sourceforge.net/##license
https://doi.org/10.1145/3538882.3542790
http://arxiv.org/abs/1409.1556
https://openreview.net/forum?id=HCSgyPUfeDj
https://openreview.net/forum?id=HCSgyPUfeDj
https://doi.org/10.1145/3301275.3302305
https://doi.org/10.1145/3301275.3302305
https://doi.org/10.24963/ijcai.2020/212
https://doi.org/10.24963/ijcai.2020/212
https://doi.org/10.1145/3290605.3300509
https://doi.org/10.1007/978-3-030-49044-7_20
https://doi.org/10.1007/978-3-319-10590-1_53
https://OpenReview.net
https://OpenReview.net

	Abstract
	1 Introduction
	2 Related Work
	2.1 Human-Robot Cooperation and Human-AI Cooperation
	2.2 Mental Models in Teams

	3 Capability-aware Shared Mental Model in Task Assignment based Human and AI cooperation (CASMM-TAHAC)
	3.1 Designing the Shared Mental Model
	3.2 Task Grouping
	3.3 Negotiation
	3.4 Evaluation Metrics

	4 CASMM: A Proof-of-Concept application
	4.1 Research Questions
	4.2 Task Design
	4.3 User Study
	4.4 Results

	5 Implications, Limitation and Future Work
	5.1 Design Implications
	5.2 Limitation and Future Work

	6 Conclusion
	Acknowledgments
	References



